Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Максимов Алексей Борисович

Должность: директор департамента МИНИСТОЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ Дата подписания: 11.10.2023 12:19:54 РОССИЙСКОЙ ФЕДЕРАЦИИ

Уникальный программный ключ:

8db180d1a3f02ac9e60521a5672742735c **Ред**еральное государственное автономное образовательное

учреждение высшего образования

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ

Декан факультета машиностроения

/Е. В. Сафонов /

2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Средства механизации сварочного производства и технологическая оснастка

15.03.01 «Машиностроение»

Профиль подготовки Оборудование и технология сварочного производства

> Квалификация (степень)выпускника бакалавр

> > Форма обучения заочная

Программа составлена в соответствии с требованиями ФГОС ВПО и учебным планом по направлению и профилю подготовки 15.03.01 «Машиностроение», «Оборудование и технология сварочного производства».

Программу составил

доцент кафедры «Оборудование и технология сварочного производства» доц., к.т.н.

/Черепахин А.А./

Программа утверждена на заседании кафедры «Оборудование и технология сварочного производства»

29.05.2021г., протокол № 11

Заведующий кафедрой «ОиТСП»,

Сафонов Е. В./

Программа согласована с руководителем образовательной программы

/Андреева Л.П./

Программа утверждена на заседании учебно-методической комиссии факультета машиностроения

20211.,

«...» 09 2021г., протокол № <u>9</u>-2/

Председатель комиссии

/ Васильев А.Н./

Присвоен регистрационный номер:

15.05.01.01/01.2021/Б.1.2.18

1. Цели освоения дисциплины:

Целью освоения дисциплины «Средства механизации сварочного производства и технологическая оснастка» является:

- установление с использованием нормативной литературы химического состава стали;
- оценка свариваемости сталей расчетно-статистическими методами;
- изучение строения сварного соединения;
- определение существенных параметров режима сварки контрольного сварного соединения

Изучение курса «Средства механизации сварочного производства и технологическая оснастка» способствует расширению научного кругозора в области технических наук, дает тот минимум фундаментальных знаний, на базе которых будущий специалист сможет самостоятельно овладевать всем новым, с чем ему придется столкнуться в профессиональной деятельности.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина «Средства механизации сварочного производства и технологическая оснастка» относится к числу профессиональных учебных дисциплин базовой части, дисциплин по выбору (Б.1.ДВ.4.) основной образовательной программы бакалавриата.

Изучение курса основывается на знаниях, полученных при изучении базовых дисциплин и дисциплин профессионального цикла

В базовой части Блока 1 «Дисциплины (модули)»:

- материаловедение;

В вариативной части Блока 1 «Дисциплины (модули)»:

- теория сварочных процессов;
- проектирование сварных конструкций;

В вариативной части дисциплин по выбору Блока 1 «Дисциплины (модули)»:

- контроль качества сварных соединений.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Согласно ФГОС по направлению «Машиностроение» применительно к дисциплине «Средства механизации сварочного производства и технологическая оснастка» выпускник должен обладать профессиональными компетенциями:

Код компетенции	В результате освоения образовательной программы обучающийся должен обладать	
ПК-7	Способность оформлять законченные проектно-конструкторские работы с проверкой соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам	
ПК-12	Способность разрабатывать технологическую и производственную документацию с использованием современных инструментальных средств	

Студент должен применять полученные знания в практической деятельности.

Студент должен уметь решать следующие задачи — оценить целесообразность применения полученных знаний для применения при изготовлении конкретного изделия.

4. Структура и содержание дисциплины

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы (144 ч.).

Программой дисциплины предусмотрены лекционные занятия – 4 ч., семинарские занятия –6 ч., самостоятельная работа студента - 134 ч.

Форма контроля – зачёт (8-ой семестр).

Наличие конспектов к лекциям в письменном виде обязательно.

Содержание разделов дисциплины

Введение

Цели механизации и автоматизации. Анализ структуры и трудоемкости работ на примере сварочного цеха.

Сборочное и сборочно-сварочное оборудование

Понятие о базировании деталей. Базирование деталей в приспособлении. Структура сборочно-сварочного оборудования. Установочные элементы приспособлений. Закрепляющие устройства и их расчет: прижимы различных типов. Приспособления для сборки. Универсально-сборочные приспособления (УСПС). Сборочно-сварочные стенды, стапели, кондукторы.

Механическое оборудование сварочного производства

Оборудование для установки и перемещения сварочных аппаратов и перемещения сварщиков. Оборудование рабочего места сварщика. Оборудование для уплотнения стыков, подачи и сбора флюса.

Подъемно-транспортное оборудование

Подъемно-транспортное оборудование сварочных цехов. Универсальное оборудование общего применения. Специализированное подъемно-транспортное оборудование.

Формы, степени и виды механизации и автоматизации

Частичная, комплексная механизация и автоматизация. Виды механизации и автоматизации. Показатели уровня механизации и автоматизации. Показатели оценки степени механизации и автоматизации. Основное направление механизации заготовительных работ. Средства механизации.

Механизированная сварка – основа механизации сварочного производства

Механизированная сварка. Автоматическая дуговая сварка. Системы регулирования дуги. Механизированная сварка. Системы ориентации сварочной головки. Системы управления электроннолучевой сваркой. Системы управления точечной контактной сваркой.

Комплексная механизация и автоматизация

Примеры комплексной механизации заготовительных работ. Механизированные и автоматические линии. Типовые линии сварочного производства

Автоматизация сварочного производства на основе применения промышленных роботов

Промышленные роботы, общие сведения. Сварочные роботы. Место сварочных роботов в производственном процессе. Роботы для сварки плавлением и для точечной контактной сварки. Принципы действия основных узлов сварочных роботов. Периферийные системы сварочных роботов. Сенсорное управление роботами. Задачи, решаемые сенсорами, на примере их использования в сварочных автоматах. Особенности технологической подготовки при внедрении сварочных роботов.

5. Образовательные технологии.

Методика преподавания дисциплины «Средства механизации сварочного производства и технологическая оснастка» и реализация компетентностного подхода в изложении и восприятии материала предусматривает использование следующих активных и интерактивных форм проведения групповых, индивидуальных, аудиторных и внеаудиторных занятий:

- чтение лекций сопровождается раздаточным материалом и показом слайдов с помощью компьютерной и проекторной техники и иллюстрируется наглядными пособиями;
 - обсуждение и защита докладов по дисциплине;
 - защита и индивидуальное обсуждение выполняемых этапов научно-исследовательской работы;
 - проведение контрольных работ;
- использование интерактивных форм текущего контроля в форме аудиторного интернет тестирования.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов.

В процессе обучения используются следующие оценочные формы самостоятельной работы студентов, оценочные средства текущего контроля успеваемости и промежуточных аттестаций:

- индивидуальный опрос;
- подготовка доклада предусматривает сбор материалов по заданной теме.
- зачёт по материалам восьмого семестра.

Оценочные средства текущего контроля успеваемости включают контрольные вопросы освоения обучающихся разделов дисциплины.

6.1. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

6.1.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

В результате освоения дисциплины (модуля) формируются следующие компетенции:

Код компетенц ии	В результате освоения образовательной программы обучающийся должен обладать	Перечень планируемых результатов обучения по дисциплине	
ПК-7	Способность оформлять законченные проектно-конструкторские работы с проверкой соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам	знать: - методы разработки рабочей проектной и технической документации, оформление законченных проектно-конструкторских работ. уметь: - разрабатывать рабочую проектную и техническую документацию, оформлять законченные проектно-конструкторские работы. владеть: - методиками разработки рабочей проектной и технической документации, оформление законченных проектно-конструкторских работ.	
ПК-12	Способность разрабатывать технологическую и производственную документацию с использованием современных инструментальных средств	знать: - методы разработки технологической и производственной документации с использованием современных инструментальных средств. уметь: - разрабатывать технологическую и производственную документацию с использованием современных инструментальных средств. владеть: - методами разработки технологической и производственной документации с использованием современных инструментальных средств.	

В процессе освоения образовательной программы данные компетенции, в том числе их отдельные компоненты, формируются поэтапно в ходе освоения обучающимися дисциплин (модулей), практик в соответствии с учебным планом и календарным графиком учебного процесса.

6.1.2. Описание показателей и критериев оценивания компетенций, формируемых по итогам освоения дисциплины (модуля), описание шкал оценивания

Показателем оценивания компетенций на различных этапах их формирования является достижение обучающимися планируемых результатов обучения по дисциплине (модулю).

Форма промежуточной аттестации: экзамен

Итоговая аттестация по дисциплине осуществляется в форме устного зачета.

Критерий оценки. Студенту предлагается три вопроса:

-оценка "зачтено" выставляется студенту, если даны исчерпывающие ответы наодин вопрос и частично на остальные два;

-оценка "не зачтено" выставляется студенту, если не даны ответы на три вопроса.

	выставляется студенту, сези не даны ответы на гри вопроса.			
Шкала оценивания	Описание			
Зачтено	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует соответствие знаний, умений, навыков приведенным в таблицах показателей, оперирует приобретенными знаниями, умениями, навыками, применяет их в ситуациях повышенной сложности. При этом могут быть допущены незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.			
Незачтено	Не выполнен один или более видов учебной работы, предусмотренных учебным планом. Студент демонстрирует неполное соответствие знаний, умений, навыков приведенным в таблицах показателей, допускаются значительные ошибки, проявляется отсутствие знаний, умений, навыков по ряду показателей, студент испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.			

Перечень примерных вопросов к самостоятельной работе студентов

- 1. Стадии и этапы конструкторской подготовки при изготовлении технологической сварочной оснастки. (ПК-7, ПК12).
 - 2. Сборочное оборудование для фиксирования и закрепления заготовок (деталей). (ПК-7, ПК12).
- 3. Состав и назначение механического оборудования. Оценка эффективности и основные показатели. (ПК-7, ПК12).
 - 4. Оборудование для установки, поворота и вращения свариваемых изделий. (ПК-14,21,23)
 - 5. Метод агрегатирования и его преимущества. Основные типовые процедуры. (ПК-7, ПК12)
 - 6. Классификация кантователей и сварочных вращателей. (ПК-7, ПК12)
- 7. Оборудование для закрепления и перемещения исполнительного органа сварочной установки (горелки, сварочного аппарата и т.п.). (ПК-7, ПК12)
- 8. Двухстоечные центровые кантователи. Особенности конструктивного исполнения. (ПК-7, ПК12)
- 9. Конструктивно-технологические признаки сварных конструкций и типизация технологических процессов. (ПК-7, ПК12)
 - 10. Основные определения и классификация установок для дуговой сварки. (ПК-7, ПК12)

- 11. Стадии и этапы конструкторской подготовки при изготовлении сварочной оснастки. Состав и содержание технического задания на разрабатываемый объект. (ПК-7, ПК12)
 - 12. Механические стенды и кондукторы для листовых и корпусных конструкций. (ПК-7, ПК12)
 - 13. Структура технологической подготовки производств сварных конструкций. (ПК-7, ПК12)
 - 14. Неравномерность движения сварочных агрегатов (головок) и меры борьбы с ней. (ПК-7, ПК12)
 - 15. Типы сборочных устройств и предъявляемые к ним требования. (ПК-7, ПК12)
- 16. Основные причины неравномерности сварочного движения установок и приобретения пульсирующего циклического характера. (ПК-7, ПК12)
- 17. Функциональное назначение и классификация механического сварочного оборудования. Формирование исходных требований к нему. (ПК-7, ПК12)
- 18. Приводы сварочного движения. Ступенчатое и бесступенчатое регулирование скорости. (ПК-7, ПК12)
- 19. Структурно-логическая схема проектной деятельности и её эффективность при разработке сварочной оснастки. (ПК-7, ПК12)
- 20. Группа деталей, применяемых в универсальных сборочных приспособлениях для сборки под сварку. (ПК-7, ПК12)
- 21. Проектирование сварочной оснастки (технологического оборудования) как специфический вид деятельности инженера-механика. (ПК-7, ПК12)
- 22. Определение степени надежности сборочно-сварочной оснастки (механического оборудования). (ПК-5,6,7,14)

Основные темы практических работ:

- 1. Схемы компоновки и пример проверочного расчёта роликового стенда (ПК-7, ПК12).
- 2. Компоновочные схемы и пример расчёта двухстоечныхцентровых кантователей (с шарнирным крепёжным устройством) (ПК-7, ПК12).
 - 3. Компоновочные схемы и пример расчёта тележки глагольного типа (ПК-7, ПК12).
 - 4. Компоновочные схемы и пример расчёта тележки портального типа (ПК-7, ПК12).
 - 5. Компоновочные схемы и пример расчёта одностоечного кантователя (ПК-7, ПК12)...
- 6. Компоновочные схемы и пример расчёта роликового стенда при различных значениях центрального угла распора (ПК-7, ПК12).

Примеры контрольных вопросов для сдачи экзаменана 8 семестре

- 1. Роль сварочного оборудования в повышении производительности процесса при сборочно-сварочных операциях в общем комплексе механизации и автоматизации сварочного производства.
 - 2. Классификация сварных конструкций.
- 3. Классификационные признаки сварных конструкций и техническая подготовка средств механизации производственного процесса.
- 4. Технологичность сварной конструкции. Структура технологической подготовки производства, типизация технологических процессов.
 - 5. Техническая подготовка по разработке и изготовлению сварочной оснастки.
 - 6. Понятия о сварочном вспомогательном оборудовании.
- 7. Введение в проектирование, основные понятия об операционных элементах: проект, конструкция, изготовление (технология) и эксплуатация.
- 8. Стадии и этапы конструкторской подготовки при изготовлении технологической оснастки (техническое задание, техническое предложение, эскизный проект, технический проект, разработка рабочей документации).
 - 9. Состав и назначение механического сварочного оборудования.
- 10. Виды механического сборочно-сварочного оборудования, применяемого в технологических процессах и их функциональное назначение.
- 11. Функциональное назначение. Классификация механического сварочного оборудования приспособлений сварочного производства.
 - 12. Сборочное оборудование для фиксирования и закрепления деталей (заготовок) под сварку.
 - 13. Оборудование для закрепления и перемещения исполнительного органа сварочной установки.
- 14. Блочно-модульная компоновка сварочных установок из механического и электромеханического оборудования.
 - 15. Метод агрегатирования и его преимущества.

- 16. Компоновка сварочных установок из типового механического и электромеханического сварочного оборудования.
 - 17. Основные типы сборочных устройств.
 - 18. Определение и классификация установок для дуговой сварки.
 - 19. Стенды и кондукторы. Эксплуатационные возможности, ограничения и недостатки.
 - 20. Стенды для балочных и листовых конструкций.
 - 21. Особенности компоновки из унифицированных узлов.
 - 22. Устройства для поворота и вращения свариваемых изделий.
 - 23. Классификация кантователей и вращателей.
 - 24. Роликовые стенды; типы и параметры, приводные и холостые опоры.
 - 25. Двухстоячные центровые кантователи.
 - 26. Особенности конструктивного исполнения. Достоинства и недостатки.
 - 27.. Устройства для перемещения сварочных аппаратов.
 - 28. Неравномерность сварочного движения.
 - 29. Устройства для перемещения сварочных аппаратов Компоновочные схемы.
 - 30. Приводы сварочного движения агрегатов технологической оснастки.
- 31. Устройства для перемещения сварочных аппаратов Основные причины и меры борьбы с ней; обеспечение стабильности.
 - 32. Определение степени надежности механического сварочного оборудования (оснастки).
 - 33. Силовые нагрузки на отдельные узлы. Расчеты систем на прочность и жесткость (примеры).

7. Учебно-методическое и информационное обеспечение дисциплины

Основная литература

- 1. Куркин С.А. и др. Компьютерное проектирование и подготовкапроизводства сварных конструкций.- М.: Изд-во МГТУ им. Н.Э.Баумана, 2002, -464с.
- 2. Жеглов, Л.Ф. Робототехнические комплексы для дуговой и контактной сварки. [Электронный ресурс] Электрон.дан. М.: МГТУ им. Н.Э. Баумана, 2009. 107 с. Режим доступа: http://e.lanbook.com/book/52136 Загл. с экрана.3. Анурьев В.И. Справочник конструктора машиностроителя. В 3-х томах.- М.: Машиностроение, 2000.

Дополнительная литература:

1. Куркин С. А., Николаев Г. Сварные конструкции, технология изготовления, механизация, автоматизация и контроль качества в сварочном производстве.- М.: «Высшая школа», 1991. -398с.

8. Материально-техническое обеспечение дисциплины.

Специализированные учебные аудитории AB2502, AB2503, AB2505 и лаборатория кафедры AB2101 «Оборудование и технология сварочного производства».

- 1. Раздаточные материалы по разделам курса;
- 2. Плакаты, слайды, демонстрационные материалы и учебные фильмы по разделам курса.

9. Методические рекомендации для самостоятельной работы студентов

Самостоятельная работа является одним из видов учебных занятий. Цель самостоятельной работы – практическое усвоение студентами вопросов метрологии, стандартизации и сертификации, рассматриваемых в процессе изучения дисциплины.

Аудиторная самостоятельная работа по дисциплине выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию.

Внеаудиторная самостоятельная работа выполняется студентом по заданию преподавателя, но без его непосредственного участия

Задачи самостоятельной работы студента:

- развитие навыков самостоятельной учебной работы;
- освоение содержания дисциплины;
- углубление содержания и осознание основных понятий дисциплины;
- использование материала, собранного и полученного в ходе самостоятельных занятий для эффективной подготовки к дифференцированному зачету и экзамену.

Виды внеаудиторной самостоятельной работы:

- самостоятельное изучение отдельных тем дисциплины;
- подготовка к лекционным занятиям;
- подготовка к лабораторным работам;
- выполнение домашних заданий по закреплению тем;
- выполнение домашних заданий по решению типичных задач и упражнений;
- составление и оформление докладов и рефератов по отдельным темам программы;
- научно-исследовательская работа студентов;
- участие в тематических дискуссиях, олимпиадах.

Для выполнения любого вида самостоятельной работы необходимо пройти следующие этапы:

- определение цели самостоятельной работы;
- конкретизация познавательной задачи;
- самооценка готовности к самостоятельной работе;
- выбор адекватного способа действия, ведущего к решению задачи;
- планирование работы (самостоятельной или с помощью преподавателя) над заданием;
- осуществление в процессе выполнения самостоятельной работы самоконтроля (промежуточного и конечного) результатов работы и корректировка выполнения работы;
 - презентация работы.

10. Методические рекомендации для преподавателя

Основное внимание при изучении дисциплины «Средства механизации сварочного производства и технологическая оснастка» следует уделять на формирование у студентов базовых знания по изучению природы и техники получения соединения, а также составление представления о целесообразности технических средств, приемов и способов, обеспечивающих создание условий для получения указанных неразъемных соединений.

При изучении раздела «Средства механизации сварочного производства и технологическая оснастка» необходимо обеспечить ознакомление студентов с использованием нормативной литературы химического состава стали, оценка свариваемости сталей расчетно-статистическими методами.

При изучении раздела «Средства механизации сварочного производства и технологическая оснастка» основное внимание необходимо уделять основным понятиям в области оценки соответствия, терминам и определениям.

Теоретическое изучение основных вопросов разделов дисциплины должно завершаться практической работой.

Для активизации учебного процесса при изучении дисциплины эффективно применение презентаций по различным темам лекций семинарских занятий и практических работ.

Для проведения занятий по дисциплине используются средства обучения:

- учебники, информационные ресурсы Интернета;
- справочные материалы и нормативно-техническая документация.

Фонды оценочных средств представлены в Приложении 1 к рабочей программе.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки: 15.03.01 МАШИНОСТРОЕНИЕ ОП (профиль): «Оборудование и технология сварочного производства» Форма обучения: заочная Вид профессиональной деятельности: (производственно-технологическая, проектно-конструкторская)

Кафедра: Оборудование и технология сварочного производства

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

СРЕДСТВА МЕХАНИЗАЦИИ СВАРОЧНОГО ПРОИЗВОДСТВА И ТЕХНОЛОГИЧЕСКАЯ ОСНАСТКА

СОСТАВ: 1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ 2. ОПИСАНИЕ ОЦЕНОЧНЫХ СРЕДСТВ: примерный перечень вопросов для зачета

Составители:

к.т.н., доц. Черепахин А.А.

Москва, 2021 год

ПОКАЗАТЕЛЬ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

СРЕДСТВА МЕХАНИЗАЦИИ СВАРОЧНОГО ПРОИЗВОДСТВА И ТЕХНОЛОГИЧЕСКАЯ ОСНАСТКА ФГОС ВО 15.03.01 «Машиностроение» В процессе освоения данной дисциплины студент формирует и демонстрирует следующие профессиональные компетенции: КОМПЕТЕНЦИИ Перечень компонентов Степени уровней освоения ехнология формироварорма оценочного ИНДЕКС ФОРМУЛИРОВКА ния компетенций средства** компетенций ПК-7 нать: - методы разработки рабочей пропособность оформлять залекция, самостоятель-Базовый уровень: P конченные проектноектной и технической документации, ная работа, лаборавоспроизводство полученных знаний в конструкторские работы оформление законченных проектноторные работы, кур-УО ходе текущего контроля; умение решать конструкторских работ. совая работа ДС типовые задачи, принимать профессиос проверкой соответметь: - разрабатывать рабочую проектствия разрабатываемых нальные и управленческие решения по ную и техническую документацию, проектов и технической известным алгоритмам, правилам и меоформлять законченные проектнодокументации стандартодикам конструкторские работы. Повышенный уровень: там, техническим условиям и другим нормаладеть: - методиками разработки рабопрактическое применение полученных чей проектной и технической докузнаний в процессе выполнения лаборативным документам торных работ и курсовой работы; готовментации, оформление законченных ность решать практические задачи попроектно-конструкторских работ. вышенной сложности, нетиповые задачи, принимать профессиональные и управленческие решения в условиях неполной определенности, при недостаточном документальном, нормативном и методическом обеспечении ПК-12 Э Способность разрабатынать: - методы разработки технологичеекция, самостоятель-Базовый уровень: P вать технологическую и ской и производственной документаная работа, лаборавоспроизводство полученных знаний в УО производственную докуции с использованием современных торные работы, курходе текущего контроля; умение решать совая работа ДС типовые задачи, принимать профессиоинструментальных средств. ментацию с использовауметь: - разрабатывать технологиченальные и управленческие решения по нием современных инструментальных средств скую и производственную документаизвестным алгоритмам, правилам и мецию с использованием современных тодикам инструментальных средств. Повышенный уровень: владеть: - методами разработки технопрактическое применение полученных логической и производственной докузнаний в процессе выполнения лабораторных работ и курсовой работы; готовментации с использованием совреность решать практические задачи поменных инструментальных средств. вышенной сложности, нетиповые задачи, принимать профессиональные и управленческие решения в условиях неполной определенности, при недостаточном документальном, нормативном

и методическом обеспечении

^{*-} Сокращения форм оценочных средств см. в приложении 2 к рабочей программе.

Перечень оценочных средств по дисциплине «Средства механизации сварочного производства и технологическая оснастка»

№ О С	Наименование оценочного- средства	Краткая характеристика оценочного средства	Представление оце- ночного средства в ФОС
1	Устный опрос (3 - зачёт)	Диалог преподавателя со студентом, цель которого — систематизация и уточнение имеющихся у студента знаний, проверка его индивидуальных возможностей усвоения материала	Вопросы к зачёту
2	Реферат (Р)	Продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определенной научной (учебно - исследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а также собственные взгляды на нее	Темы рефератов
3	Доклад, сообщение (ДС)	Продукт самостоятельной работы студента, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебно-практической, учебно-исследовательской или научнойтемы	Темы докладов, сообщений
4	Устный опрос- собеседование, (УО)	Средство контроля, организованное как специальная беседа педагогического работника с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.	Вопросы по темам/разделам дис- циплины
3	Практические работы (ПР)	Метод репродуктивного обучения, обеспечивающий связь теории и практики, содействующий выработке у студентов умений и навыков применения знаний, полученных на лекции и в ходе самостоятельной работы; оценивается способность студента к решению различных прикладных задач, образцы которых были даны на лекциях	Перечень практиче- ских работ
4	Презентация (ПР)	Представление студентом наработанной информации по заданной тематике в виде набора слайдов и спецэффектов, подготовленных в выбранной программе	Темы презентаций

Перечень примерных вопросов к самостоятельной работе студентов

1. Стадии и этапы конструкторской подготовки при изготовлении технологической сварочной оснастки. (ПК-7, ПК12).

- 2. Сборочное оборудование для фиксирования и закрепления заготовок (деталей).. (ПК-7, ПК12).
- 3. Состав и назначение механического оборудования. Оценка эффективности и основные показатели. (ПК-7, ПК12).
 - 4. Оборудование для установки, поворота и вращения свариваемых изделий. (ПК-7, ПК12).
- 5. Метод агрегатирования и его преимущества. Основные типовые процедуры.. (ПК-7, Π K12).
 - 6. Классификация кантователей и сварочных вращателей.. (ПК-7, ПК12).
- 7. Оборудование для закрепления и перемещения исполнительного органа сварочной установки (горелки, сварочного аппарата и т.п.).. (ПК-7, ПК12).
- 8. Двухстоечные центровые кантователи. Особенности конструктивного исполнения.. (ПК-7, ПК12).
- 9. Конструктивно-технологические признаки сварных конструкций и типизация технологических процессов..(ПК-7, ПК12).
 - 10. Основные определения и классификация установок для дуговой сварки.. (ПК-7, ПК12).
- 11. Стадии и этапы конструкторской подготовки при изготовлении сварочной оснастки. Состав и содержание технического задания на разрабатываемый объект.. (ПК-7, ПК12).
- 12. Механические стенды и кондукторы для листовых и корпусных конструкций.. (ПК-7, ПК12).
- 13. Структура технологической подготовки производств сварных конструкций.. (ПК-7, ПК12).
- 14. Неравномерность движения сварочных агрегатов (головок) и меры борьбы с ней.. (ПК-7, ПК12).
 - 15. Типы сборочных устройств и предъявляемые к ним требования.. (ПК-7, ПК12).
- 16. Основные причины неравномерности сварочного движения установок и приобретения пульсирующего циклического характера.. (ПК-7, ПК12).
- 17. Функциональное назначение и классификация механического сварочного оборудования. Формирование исходных требований к нему. (ПК-7, ПК12).
- 18. Приводы сварочного движения. Ступенчатое и бесступенчатое регулирование скорости.. (ПК-7, ПК12).
- 19. Структурно-логическая схема проектной деятельности и её эффективность при разработке сварочной оснастки. (ПК-7, ПК12).
- 20. Группа деталей, применяемых в универсальных сборочных приспособлениях для сборки под сварку. (ПК-7, ПК12).
- 21. Проектирование сварочной оснастки (технологического оборудования) как специфический вид деятельности инженера-механика. (ПК-7, ПК12)
- 22. Определение степени надежности сборочно-сварочной оснастки (механического оборудования).. (ПК-7, ПК12).

Основные темы практических работ:

- 1. Схемы компоновки и пример проверочного расчёта роликового стенда. (ПК-7, ПК12).
- 2. Компоновочные схемы и пример расчёта двухстоечных центровых кантователей(с шарнирным крепёжным устройством). (ПК-7, ПК12).
 - 3. Компоновочные схемы и пример расчёта тележки глагольного типа. (ПК-7, ПК12).
 - 4. Компоновочные схемы и пример расчёта тележки портального типа (ПК-7, ПК12).
 - 5. Компоновочные схемы и пример расчёта одностоечного кантователя (ПК-7, ПК12).
- 6. Компоновочные схемы и пример расчёта роликового стенда при различных значениях центрального угла распора. (ПК-7, ПК12).

Примеры контрольных вопросов для сдачи зачёта

- 1. Роль сварочного оборудования в повышении производительности процесса при сборочносварочных операциях в общем комплексе механизации и автоматизации сварочного производства (ПК-7, ПК12).
 - 2.Классификация сварных конструкций (ПК-7, ПК12).
- 3. Классификационные признаки сварных конструкций и техническая подготовка средств механизации производственного процесса. (ПК-7, ПК12).

- 4. Технологичность сварной конструкции. Структура технологической подготовки производства, типизация технологических процессов.(ПК-7, ПК12).
- 5. Техническая подготовка по разработке и изготовлению сварочной оснастки. (ПК-7, ПК12).
 - 6. Понятия о сварочном вспомогательном оборудовании. (ПК-7, ПК12).
- 7. Введение в проектирование, основные понятия об операционных элементах: проект, конструкция, изготовление (технология) и эксплуатация. (ПК-7, ПК12).
- 8. Стадии и этапы конструкторской подготовки при изготовлении технологической оснастки (техническое задание, техническое предложение, эскизный проект, технический проект, разработка рабочей документации).(ПК-7, ПК12).
 - 9. Состав и назначение механического сварочного оборудования. (ПК-7, ПК12).
- 10. Виды механического сборочно-сварочного оборудования, применяемого в технологических процессах и их функциональное назначение. (ПК-7, ПК12).
- 11. Функциональное назначение. Классификация механического сварочного оборудования приспособлений сварочного производства.(ПК-7, ПК12).
- 12. Сборочное оборудование для фиксирования и закрепления деталей (заготовок) под сварку. (ПК-7, ПК12).
- 13. Оборудование для закрепления и перемещения исполнительного органа сварочной установки.(ПК-7, ПК12).
- 14. Блочно-модульная компоновка сварочных установок из механического и электромеханического оборудования. (ПК-7, ПК12).
 - 15. Метод агрегатирования и его преимущества. (ПК-7, ПК12).
- 16. Компоновка сварочных установок из типового механического и электромеханического сварочного оборудования.(ПК-7, ПК12).
 - 17. Основные типы сборочных устройств. (ПК-7, ПК12).
 - 18. Определение и классификация установок для дуговой сварки. (ПК-7, ПК12).
- 19. Стенды и кондукторы. Эксплуатационные возможности, ограничения и недостатки.(ПК-7, ПК12).
 - 20. Стенды для балочных и листовых конструкций. (ПК-7, ПК12).
 - 21. Особенности компоновки из унифицированных узлов. (ПК-7, ПК12).
 - 22. Устройства для поворота и вращения свариваемых изделий. (ПК-7, ПК12).
 - 23. Классификация кантователей и вращателей. (ПК-7, ПК12).
 - 24. Роликовые стенды; типы и параметры, приводные и холостые опоры.(ПК-7, ПК12).
 - 25. Двухстоячные центровые кантователи. (ПК-7, ПК12).
 - 26. Особенности конструктивного исполнения. Достоинства и недостатки.(ПК-7, ПК12).
 - 27.. Устройства для перемещения сварочных аппаратов. (ПК-7, ПК12).
 - 28. Неравномерность сварочного движения.(ПК-7, ПК12).
- 29. Устройства для перемещения сварочных аппаратов Компоновочные схемы. (ПК-7, ПК12).
 - 30. Приводы сварочного движения агрегатов технологической оснастки.(ПК-7, ПК12).
- 31. Устройства для перемещения сварочных аппаратов Основные причины и меры борьбы с ней; обеспечение стабильности.(ПК-7, ПК12).
- 32. Определение степени надежности механического сварочного оборудования (оснастки). (ПК-7, ПК12).
- 33. Силовые нагрузки на отдельные узлы. Расчеты систем на прочность и жесткость (примеры).(ПК-7, ПК12).