Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Максимов Алексей Борисович

Должность: директор департания проображования российской федерации

Дата подписания: 21.05.2024 11:39:18 сударственное автономное образовательное учреждение высшего образования

Уникальный программный ключ:

8db180d1a3f02ac9e60521a56727427**5**М100СКОВСКИЙ ПО ЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(МОСКОВСКИЙ ПОЛИТЕХ)

Транспортный факультет

УТВЕРЖДАЮ

И.о. декана

/М.Р. Рыбакова/

«15» февраля 2024г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Анализ данных и искусственный интеллект

Направление подготовки 23.05.01 Наземные транспортно-технологические средства

> Профиль Перспективные автомобили и электромобили

> > Квалификация инженер

Формы обучения очная

Разработчик(и):

доцент, к.т.н.

/А.В.Климов /

Согласовано:

Заведующий кафедрой, д.т.н., профессор

Jul

А.В. Келлер

Содержание

1.	П	[ели, задачи и планируемые результаты обучения по дисциплине	4
2.	N	1есто дисциплины в структуре образовательной программы	4
3.	C	труктура и содержание дисциплины	5
	3.1	Виды учебной работы и трудоемкость	5
	3.2	Тематический план изучения дисциплины	5
	3.3	Содержание дисциплины	6
	3.4	Тематика семинарских/практических и лабораторных занятий	7
	3.5	Тематика курсовых проектов (курсовых работ)	
4.	У	чебно-методическое и информационное обеспечение	7
	4.1	Нормативные документы и ГОСТы	7
	4.2	Основная литература	8
	4.3	Дополнительная литература	8
	4.4	Электронные образовательные ресурсы	8
	4.5	Лицензионное и свободно распространяемое программное обеспечение	8
	4.6	Современные профессиональные базы данных и информационные справочные	
	C	истемы	8
5.	N	Иатериально-техническое обеспечение	8
6.	N	Иетодические рекомендации	9
	6.1	Методические рекомендации для преподавателя по организации обучения	9
	6.2	Методические указания для обучающихся по освоению дисциплины	10
7.	4	Онд оценочных средств	10
	7.1	Методы контроля и оценивания результатов обучения	11
	7.2	Шкала и критерии оценивания результатов обучения	11
	7.3	Оценочные средства	11

1. Цели, задачи и планируемые результаты обучения по дисциплине

К основным целям освоения дисциплины «Анализ скусственный интеллект» следует отнести:

• формирование у обучающихся знаний о современных принципах, методах и средствах анализа свойств ПСХЭЭ для электрических транспортных средств.

К основным задачам освоения дисциплины «Анализ данных и искусственный интеллект»:

- формирование представления о составе перезаряжаемых систем хранения электрической энергии, принципах работы системы и ее отдельных компонентов, требованиях безопасности;
- освоение общих принципов и особенностей методик математического описания указанных свойств.

Обучение по дисциплине «

» направлено на формирование у обучающихся следующих компетенций:

Код и наименование компетенций		торы дости: етенции	жения
ПК-6.	-6.1.	•	-6.2.
		;	-6.3.
	-		
	·		

2. Место дисциплины в структуре образовательной программы

Дисциплина	является	•
------------	----------	---

« » взаимосвязана логически и содержательно-методически со следующими дисциплинами и практиками ООП:

- Теория втомобиля.
- Испытания

3. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетных единицы (108 часов).

Виды учебной работы и трудоемкость 3.1 (по формам обучения)

3.1.1. Очная форма обучения

№ п/п	Вид учебной работы	Количество часов	Семестры 5
1	Аудиторные занятия	54	54
	В том числе:		
1.1	Лекции	2	2
1.2	Семинарские/практические занятия		
1.3	Лабораторные занятия	52	52
2	Самостоятельная работа	54	54
3	Промежуточная аттестация		
	Зачет		
	Итого	108	

Тематический план изучения дисциплины 3.2

(по формам обучения)

3.2.1. Очная форма обучения

		Трудоемкость, час					
			Аудиторная работа				ая
№ п/п	Разделы/темы дисциплины	Всего	Лекции	Семинарские/	Лабораторные занятия	Практическая юдготовка	Самостоятельная работа
1	Основные понятия и	12	-	-	6	-	6
	характеристики						
	перезаряжаемых систем						
	накопления энергии. Состав						
	системы. Принципы построения						
	систем						
2	Единичные аккумуляторы	12	-	-	6	-	6

3	Старение ПСХЭЭ	12	-	-	6	-	6
4	Система управления ПСХЭЭ	12	-	-	6	-	6
5	Термоменеджмент ПСХЭЭ	12	-	-	6	-	6
6	Безопасность ПСХЭЭ,	12	-	-	6	-	6
	требования стандартов						
	различных стран						
7	Проблематика построения	12	-	-	6	-	6
	больших ПСХЭЭ						
8	Методология выбора ПСХЭЭ	12	-	-	6	-	6
	для применения в						
	электромобилях						
9	Развитие рынка ПСХЭЭ	12	2	-	4	-	6
	Итого	108	2	-	52	-	54

3.3 Содержание дисциплины

Раздел 1. Основные понятия и характеристики перезаряжаемых систем накопления энергии. Состав системы. Принципы построения систем.

Основные составляющие ПСХЭЭ. Понятия SOC, SOH, DOD, dcl, ccl, OCV, динамическое напряжение. Принципы построения ПСХЭЭ. Заряд и разряд ПСХЭЭ.

Раздел 2. Единичные аккумуляторы.

Существующие химические системы, их преимущества и недостатки. Принцип работы единичных аккумуляторов. Характеристики аккумуляторов и их зависимости. Методы получения характеристик. Схемы замещения ячеек.

Раздел 3. Старение ПСХЭЭ.

Эффекты от старения ПСХЭЭ, механизмы старения, влияющие факторы.

Раздел 4. Система управления ПСХЭЭ.

Общая топология системы управления ПСХЭЭ. Функции элементов системы управления ПСХЭЭ. Типы систем балансировки. Основные функции ПО системы управления ПСХЭЭ, аспекты безопасности.

Раздел 5. Термоменеджмент ПСХЭЭ.

Необходимость термоменеджмента ПСХЭЭ, организация систем термостатирования ПСХЭЭ, примеры расчетов системы термоменеджмента.

Раздел 6. Безопасность ПСХЭЭ, требования стандартов различных стран.

Требования к безопасности аккумуляторных ячеек, виды тестов на работы с нарушением режимов аккумуляторных ячеек. Работа с нарушение режимов ПСХЭЭ, виды тестов. Описание стандартов различных стран для ПСХЭЭ.

Раздел 7. Проблематика построения больших ПСХЭЭ.

Проблематика параллельного соединения аккумуляторов. Проблематика параллельного соединения последовательно соединенных аккумуляторов.

Раздел 8. Методология выбора ПСХЭЭ для применения в электромобилях.

Аспекты, рассматриваемые при формировании технических требований к ПСХЭЭ для конкретных автомобилей и их проверка.

Раздел 9. Развитие рынка ПСХЭЭ.

Основные проблемы рынка ПСХЭЭ. Новые технологии – их преимущества и недостатки.

3.4 Тематика семинарских/практических и лабораторных занятий

3.4.2. Лабораторные занятия

- 1. Заряд и разряд ПСХЭЭ.
- 2. Схемы замещения ячеек.
- 3. Функции элементов системы управления ПСХЭЭ
- 4. Работа с нарушение режимов ПСХЭЭ, виды тестов
- 5. Проблематика параллельного соединения последовательно соединенных аккумуляторов.
- 6. Аспекты, рассматриваемые при формировании технических требований к ПСХЭЭ для конкретных автомобилей и их проверка.
- 7. Основные проблемы рынка ПСХЭЭ.

3.5 Тематика курсовых проектов (курсовых работ)

Отсутствуют курсовые проекты согласно учебному плану

4. Учебно-методическое и информационное обеспечение

4.1 Нормативные документы и ГОСТы

ГОСТ Р 70250-2022 НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ СИСТЕМЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ Варианты использования и состав функциональных подсистем искусственного интеллекта

ГОСТ Р 70249-2022 СИСТЕМЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ. ВЫСОКОАВТОМАТИЗИРОВАННЫЕ ТРАНСПОРТНЫЕ СРЕДСТВА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

4.2 Основная литература

- 1. «Справочник по литий-ионным батареям. Дизайн аккумуляторной батареи» Джон Уорнер.
- 2. «Достижения в области аккумуляторных технологий для электромобилей» под редакцией Бруно Скросати, Юрген Гарче и Вернер Тильмен.
- 3. «Системы управления батареями Точная индикация состояния заряда для приложений с питанием от батарей» Валер Поп, Хенк Ян Бергвельд, Дмитрий Данилов, Пол П.Л. Регтьен, Питер Х.Л. Ночи

4.3 Дополнительная литература

- 1. «Системы управления батареями для больших литий-ионных батарей» Дэвид Эндрю
- 2. «Поведение литий-ионных аккумуляторов в электромобилях», под редакцией Джанфранко Пистойя

4.4 Электронные образовательные ресурсы

- 1. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 2. 3GC «BOOK.ru» https://www.book.ru
- 3. 3 SEC «ZNANIUM.COM» www.znanium.com

4. . .

4.5 Лицензионное и свободно распространяемое программное обеспечение

1. Office / Российский пакет офисных программ

4.6 Современные профессиональные базы данных и информационные справочные системы

- 1. http://rushim.ru/books/electrochemistry/electrochemistry.htm электронная библиотека
- 2. http://www.ise-online.org International Society of Electrochemistry
- 3. Консультант Плюс справочная правовая система (доступ по локальной сети с компьютеров библиотеки)
- 4. СДО Московского Политеха

5. Материально-техническое обеспечение

Специализированные аудитории «Передовая инженерная школа»: AB4701 и AB4710 оснащенные проектором, экраном, ПЭВМ.

6. Методические рекомендации

6.1 Методические рекомендации для преподавателя по организации обучения

Основным требованием к преподаванию дисциплины является творческий проблемно-диалоговый подход, позволяющий повысить интерес студентов к содержанию учебного материала.

Основная форма изучения и закрепления знаний по этой дисциплине – лекции и лабораторные занятия. Преподаватель должен последовательно вычитать студентам ряд лекций, в ходе которых следует сосредоточить внимание на ключевых моментах конкретного теоретического материала, а также организовать проведение лабораторных занятий таким образом, чтобы стимулировать активизировать мышление студентов, самостоятельное необходимой информации извлечение из различных источников, сравнительный анализ методов решений, сопоставление полученных результатов, формулировку и аргументацию собственных взглядов на многие спорные проблемы.

Основу учебных занятий по дисциплине составляют лекционные занятия. На первом занятии по данной учебной дисциплине необходимо ознакомить студентов с порядком ее изучения, раскрыть место и роль дисциплины в системе наук, ее практическое значение, ответить на вопросы.

Теоретическое изучение основных вопросов разделов дисциплины должно завершаться лабораторной работой. Темы задач, предлагаемых студентам для решения на практических занятиях, должны быть максимально приближены к темам последних лекций по данной дисциплине. В связи с указанным, целесообразен тесный контакт лектора с преподавателями, ведущими лабораторные занятия.

Изучение дисциплины завершается зачетом. Оценка выставляется преподавателем и объявляется после ответа. Преподаватель, принимающий зачет, лично несёт ответственность за правильность выставления оценки.

Программа составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по специальности 23.04.02 «Наземные транспортно-технологические средства».

6.2 Методические указания для обучающихся по освоению дисциплины

Самостоятельная работа студентов представляет собой важнейшее звено учебного процесса, без правильной организации которого обучающийся не может быть высококвалифицированным выпускником. Самостоятельная работа является одним из видов учебных занятий. Цель самостоятельной работы — практическое усвоение студентами вопросов устройства транспортных средств, рассматриваемых в процессе изучения дисциплины. Самостоятельная работа студентов направлена на изучение теоретического материала, подготовку к лекционным, лабораторным, семинарским (практическим) занятиям; выполнение контрольных заданий.

Аудиторная самостоятельная работа по дисциплине выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию. Внеаудиторная самостоятельная работа выполняется студентом по заданию преподавателя, но без его непосредственного участия.

Задачами самостоятельной работы студента являются:

- развитие навыков самостоятельной учебной работы;
- освоение содержания дисциплины;
- углубление содержания и осознание основных понятий дисциплины;
 - использование материала, собранного и полученного в ходе самостоятельных занятий для эффективной подготовки к дифференцированному зачету.

Студент должен помнить, что начинать самостоятельные занятия следует с первого семестра и проводить их регулярно. Каждый студент должен сам планировать свою самостоятельную работу, исходя из своих возможностей и приоритетов. Это стимулирует выполнение работы, создает более спокойную обстановку, что в итоге положительно сказывается на усвоении материала.

Студент должен помнить, что в процессе обучения важнейшую роль играет самостоятельная работа с технической литературой. Научиться работать с технической литературой — важнейшая задача студента. Без этого навыка будет чрезвычайно трудно изучать программный материал, и много времени будет потрачено нерационально. Работа с технической литературой складывается из умения подобрать необходимые книги, разобраться в них, законспектировать, выбрать главное усвоить и применить на практике.

7. Фонд оценочных средств

7.1 Методы контроля и оценивания результатов обучения

В процессе обучения используются следующие оценочные формы самостоятельной работы студентов, оценочные средства текущего контроля успеваемости и промежуточных аттестаций:

- -подготовка к лабораторным занятиям и выполнение и защита их;
- -выполнение контрольных заданий.

7.2 Шкала и критерии оценивания результатов обучения

Шкала оценивания	Описание
Зачтено	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует соответствие знаний, умений, навыков приведенным в таблицах показателей, оперирует приобретенными знаниями, умениями, навыками, применяет их в ситуациях повышенной сложности. При этом могут быть допущены незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на другие конструкции.
Не зачтено	Не выполнен один или более видов учебной работы, предусмотренных учебным планом. Студент демонстрирует неполное соответствие знаний, умений, навыков приведенным в таблицах показателей, допускаются значительные ошибки, проявляется отсутствие знаний, умений, навыков по ряду показателей, студент испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на другие конструкции.

7.3 Оценочные средства

7.3.1. Текущий контроль

Темы для рефератов:

- 1. Понятия SOC, SOH, DOD, dcl, ccl, OCV, динамическое напряжение.
- 2. Принципы построения ПСХЭЭ.
- 3. Заряд и разряд ПСХЭЭ.
- 4. Существующие химические системы, их преимущества и недостатки.
- 5. Принцип работы единичных аккумуляторов. Характеристики аккумуляторов и их зависимости.

- 6. Методы получения характеристик. Схемы замещения ячеек.
- 7. Эффекты от старения ПСХЭЭ, механизмы старения, влияющие факторы.
- 8. Общая топология системы управления ПСХЭЭ.
- 9. Функции элементов системы управления ПСХЭЭ.
- 10. Типы систем балансировки.
- 11.Основные функции ПО системы управления ПСХЭЭ, аспекты безопасности.
- 12. Необходимость термоменеджмента ПСХЭЭ, организация систем термостатирования ПСХЭЭ, примеры расчетов системы термоменеджмента.
- 13. Требования к безопасности аккумуляторных ячеек, виды тестов на работы с нарушением режимов аккумуляторных ячеек.
- 14. Работа с нарушение режимов ПСХЭЭ, виды тестов.
- 15. Описание стандартов различных стран для ПСХЭЭ.
- 16. Проблематика параллельного соединения аккумуляторов.
- 17. Проблематика параллельного соединения последовательно соединенных аккумуляторов.
- 18. Аспекты, рассматриваемые при формировании технических требований к ПСХЭЭ для конкретных автомобилей и их проверка.
- 19.Основные проблемы рынка ПСХЭЭ.
- 20. Новые технологии их преимущества и недостатки.

7.3.2. Промежуточная аттестация

Вопросы на зачет:

- 21. Понятия SOC, SOH, DOD, dcl, ccl, OCV, динамическое напряжение.
- 22. Принципы построения ПСХЭЭ.
- 23. Заряд и разряд ПСХЭЭ.
- 24. Существующие химические системы, их преимущества и недостатки.
- 25. Принцип работы единичных аккумуляторов. Характеристики аккумуляторов и их зависимости.
- 26. Методы получения характеристик. Схемы замещения ячеек.
- 27. Эффекты от старения ПСХЭЭ, механизмы старения, влияющие факторы.
- 28.Общая топология системы управления ПСХЭЭ.
- 29. Функции элементов системы управления ПСХЭЭ.

- 30. Типы систем балансировки.
- 31.Основные функции ПО системы управления ПСХЭЭ, аспекты безопасности.
- 32. Необходимость термоменеджмента ПСХЭЭ, организация систем термостатирования ПСХЭЭ, примеры расчетов системы термоменеджмента.
- 33. Требования к безопасности аккумуляторных ячеек, виды тестов на работы с нарушением режимов аккумуляторных ячеек.
- 34. Работа с нарушение режимов ПСХЭЭ, виды тестов.
- 35.Описание стандартов различных стран для ПСХЭЭ.
- 36. Проблематика параллельного соединения аккумуляторов.
- 37. Проблематика параллельного соединения последовательно соединенных аккумуляторов.
- 38. Аспекты, рассматриваемые при формировании технических требований к ПСХЭЭ для конкретных автомобилей и их проверка.
- 39. Основные проблемы рынка ПСХЭЭ.
- 40. Новые технологии их преимущества и недостатки.