Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Максимов Алексей Бориминистерство науки и высшего образования российской федерации

Должность: директор дератвио то по должность: директор дерато директор директор дерато директор ди

8db180d1a3f02ac9e60521a5672742735c18b1d6

(МОСКОВСКИЙ ПОЛИТЕХ)

Факультет химической технологии и биотехнологии

УТВЕРЖДАЮ
А.С. Соколов / февраля 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МЕПИПИНСКАЯ ЕИОУИМИЯ

МЕДИЦИПСКАЯ ВИОЛИМИЛ					
19.03.01 Биотехнология					
Промышленная биотехнология и биоинженерия					
Бакалавр					
Очная					

Москва, 2024г.

Разработчик(и):

профессор, д.б.н., профессор

Th-

Т.И. Громовых /

Согласовано:

Заведующий кафедрой «ХимБиотех» к.б.н

Л.И. Салитринник

Содержание

- 1. Цели, задачи и планируемые результаты обучения по дисциплине4
- 2. Место дисциплины в структуре образовательной программы5
- 3. Структура и содержание дисциплины5
 - 3.1. Виды учебной работы и трудоемкость 6
 - 3.2. Тематический план изучения дисциплины6
 - 3.3. Содержание дисциплины Ошибка! Закладка не определена.
 - 3.4. Тематика семинарских/практических и лабораторных занятий9
 - 3.5. Тематика курсовых проектов (курсовых работ)13
- 4. Учебно-методическое и информационное обеспечение 13
 - 4.1. Нормативные документы и ГОСТы13
 - 4.2. Основная литература13
 - 4.3. Дополнительная литература14
 - 4.4. Электронные образовательные ресурсы Ошибка! Закладка не определена.
 - 4.5. Лицензионное и свободно распространяемое программное обеспечение 14
 - 4.6. Современные профессиональные базы данных и информационные справочные системы14
- 5. Материально-техническое обеспечение 14
- 6. Методические рекомендации 15
 - международный опыт в профессиональной деятельности 6.2. Методические указания для обучающихся по освоению дисциплины15
- 7. Фонд оценочных средств 16
 - 7.1. Методы контроля и оценивания результатов обучения 16
 - 7.2. Шкала и критерии оценивания результатов обучения 16
 - 7.3. Оценочные средства17

1. Цели, задачи и планируемые результаты обучения по дисциплине

Целью дисциплины "Медицинская биохимия" является формирование целостного представления об организме человека на молекулярном уровне, о биохимической основе протекающих в нем физиологических процессов. В курсе «Медицинская биохимия» излагаются сведения об обмене веществ, функциональной биохимии тканей, органов и биологических жидкостей организма. Освоение медицинской биохимии базируется на знаниях общего курса биохимии, общей, аналитической, органической и молекулярной биологии и разработки новых технологий в области биотехнологии лекарственных препаратов, современных диагностических средств, биосовместимых материалов и клеточных технологий.

К задачам изучения дисциплины следует отнести:

- изучение методов и объектов молекулярной биохимии, формирование у студентов твердой научной базы, позволяющей ему ориентироваться в узкоспециальных вопросах молекулярной биохимии и биомедицины.
- приобретение студентом теоретических и практических знаний и навыков, необходимых будущему специалисту для обоснованных решений при организации и проведении исследований в области биотехнологии, молекулярной биохимии и биомедицины;
- изучение основных методов молекулярной диагностики и биомедицины;
- приобретение навыков самостоятельной профессиональной работы с объектами биохимии: с клетками животных, клеточными структурами, ферментами, моноклональными антителами и другими биологически активными веществами.

Обучение по дисциплине «Медицинская биохимия» направлено на формирование у обучающихся следующих компетенций:

Код и наименование компетенций	Индикаторы достижения компетенции
ОПК-2 – способность и готовность	Знать
использовать основные законы	- особенности структурно-функциональной
естественнонаучных дисциплин в	организации клетки и субклеточных компо-
профессиональной деятельности,	нентов;
применять методы математического	- строение и функции наиболее важных мо-
анализа и моделирования, теоретического	номеров и биополимеров организма чело-
и экспериментального исследования	века;
•	- основные метаболические пути и особен-
	ности биоэнергетики клетки;
	- принципы интеграции и регуляции внутри-
	клеточного метаболизма;
	- основные принципы качественного и коли-
	чественного анализа биологического матери-
	ала;
	- роль и перспективы биохимии в решении
	практических задач медицины.
	Уметь
	- выполнять биохимические анализы;
	- проводить обработку результатов экспери-
	ментальных исследований;
	- анализировать и объяснять полученные
	данные, увязывая их с основами теоретиче-
	ского курса;

	,
	- грамотно излагать учебный материал в уст-
	ной и письменной форме.
	- использовать полученные знания в
	практической деятельности;
	применять методы получения
	биологически а активных веществ,
	антисывороток и антител
	Владеть: (демонстрировать навыки и опыт
	деятельности):
	- количественного и качественного анализа
	различных биологических объектов;
	- работы с учебно-методической и справоч-
	ной литературой по биохимии;
	- эффективной работы в малых группах.
ПК-8- способностью работать с научно-	Знать:
технической информацией, использовать	основные методы математического
российский и международный опыт в	планирования экспериментов
профессиональной деятельности	Уметь:
	- определять критерий оптимальности,
	- проверять достоверность полученных
	экспериментальных данных
	Владеть:
	-навыками планирования и обработки
	результатов биохимических
	экспериментов, на основе которых
	разрабатываются технологии производств.
	разрабатываются технологии производств.

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к элективной части, формируемой участниками образовательных отношений блока Б1.2 ЭД5 «Элективные дисциплины)».

Дисциплина «Медицинская биохимия» взаимосвязана логически и содержательнометодически со следующими дисциплинами и практиками ООП:

В обязательной части цикла (Б1.1):

Органическая химия

Общая биология и микробиология

Биохимия

Основы молекулярной биологии

Молекулярная и клеточная биотехнология

Аналитическая химия и физико-химические методы анализа

Химия биологически активных веществ.

Знания, умения и навыки, сформированные, на дисциплине «Медицинские биохимия», будут использованы на последующих этапах при прохождении преддипломной практики и подготовки выпускной квалификационной работы.

3. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетных(e) единиц(ы) (108 часов), из них лекции – 36 часов, семинарские занятия 36 часов. Самостоятельная работа 36 часов.

3.1 Виды учебной работы и трудоемкость (по формам обучения)

3.1.1. Очная форма обучения

No	D	Количество	Семестры		
п/п	Вид учебной работы	часов	8		
1	Аудиторные занятия	72	72		
	В том числе:				
1.1	Лекции	36	36		
1.2	Семинарские/практические занятия	36	36		
1.3	Лабораторные занятия	-	-		
2	Самостоятельная работа				
	В том числе:				
2.1	Пути обмена аминокислот		2		
2.2	Показатели биохимического анализа крови		2		
2.3	Интеграция и регуляция азотистого обмена		2		
2.4.	Активности креатинкиназы в плазме крови				
2.5	Гормональная регуляция.				
2.6.	Биохимия крови и мочи				
3	Промежуточная аттестация		тест		
	Зачет/диф.зачет/экзамен		экзамен		
	Итого	72			

3.2 Тематический план изучения дисциплины (по формам обучения) 3.2.1. Очная форма обучения

		Трудоемкость, час					
							ITE
№ п/п	Разделы/темы дисциплины	Всего	Лекции	Семинарс кие/ практические	Лаборато рные занятия	Практиче ская подготовка	Самостояте льная работа
1	Раздел 1. Определение	6	2	2			2
	«Медицинская биохимия».						
	Основные направления развития						
2	Раздел 2. Метаболизм. Обмен белков.	6	2	2			2
	Биосинтез белка.						
2.1	Роль белка в питании, биологическая	3	1	1			1
	ценность, принципы нормирования,						
	биохимические нарушения.						
2.2	Биосинтез белка: краткая	3	1	1			1
	характеристика основных этапов.						
	Посттрансляционная модификация и						
	фолдинг белков.						
3	Раздел 3. Обмен аминокислот	12	4	4			4

2.1	05	1 2	1	1 1		1	1
3.1	Обмен аминокислот в клетке: реакции	3	1	1			1
	декарбоксилирования,						
2.2	переаминирования, дезаминирования						
3.2	Обмен кетогенных и глюкогенных	3	1	1			1
	аминокислот. Понятие о заменимых,						
	незаменимых, частично и условно						
2.2	заменимых аминокислотах.		2				-
3.3	Цикл мочевинообразования	6	2	2			2
	(орнитиновый цикл, цикл мочевины,						
	цикл Кребса- Ганзелейта). Обмен						
4	аргинина	10					
4	Раздел 4. Биохимия эндокринной	18	6	6			6
	регуляции						
4.1	Уровни и принципы организации	6	2	2			2
	регуляторных систем: нервной,						
	эндокринной, иммунной.						
4.2	Классификации гормонов по	6	2	2			2
	химической природе, месту						
	биосинтеза, физиологическим						
	эффектам. Этапы метаболизма						
	гормонов Рецепторы гормонов						
4.3	Тиреоидные гормоны (Т3, Т4):	3	1	1			1
	химическая природа, структура, этапы						
	биосинтеза, регуляция, механизм						
	действия						
4.4	Гормоны гипоталамуса, гипофиза:	3	1	1			1
	химическая природа, механизм						
	действия. Стероидные гормоны:						
	строение, механизм действия						
5	Раздел 5. Кровь: функции, состав,	12	4	4			4
	физико- химические свойства						
5.1	Белки сыворотки крови: фракции,	3	1	1			1
	функции, диагностическое значение						
	электрофореграмм.						
5.2	Билирубин: физико-химические	3	1	1			1
	свойства, обмен, диагностическое						
	значение определения содержания в						
	крови и моче						
5.3	Гемоглобин и миоглобин: строение,	3	1	1			1
	функции						
5.4	Минеральные компоненты крови (Mn,	3	1	1			1
	Mg, Cu, Zn, Se, Co, I2): биологическая						
	роль, биохимические нарушения						
6	Раздел 6. Моча: физико-химические	12	4	4			4
	свойства						
6.1	Биохимический состав мочи,	6	2	2			2
	диагностическое значение						
	исследования общих свойств						
6.2	Механизм образования первичной	6	2	2			2
"-	мочи		_				_
7.	Раздел 7. Функциональная биохимия	18	6	6			6
	вырами / • тинцимилинал инчанина	10	U	U	ĺ	1	

	тканей и органов					
7.1	Печень: особенности обмена углеводов,	3	1	1		1
	липидов, белков и аминокислот,					
	биохимические показатели крови					
7.2	Печень: механизмы обезвреживания	3	1	1		1
	экзогенных и эндогенных токсических					
	веществ					
7.3	Соединительная ткань: состав, функции;	3	1	1		1
	строение коллагена и эластина,					
	значение. Белки соединительной ткани					
	(коллаген, эластин, фибронектин)					
7.4	Головной мозг: химический состав	6	2	2		2
	сухого остатка, белого и серого					
	вещества, нейронов, синапсов, нервных					
	волокон					
7.5	Мышечная ткань: виды, функции,	3	1	1		1
	особенности внутриклеточных структур					
	и метаболизма					
8	Раздел 8. Особенности	12	4	4		4
	энергетического обмена человека:					
	углеводов, липидов, нуклеотидов и					
	нуклеиновых кислот					
8.1	Углеводный и липидный обмен	6	2	2		2
8.2	Обмен нуклеотидов и нуклеиновых	4	1	1		1
	кислот					
8.3	Обмен нейромедиаторов. Механизмы	4	1	1		1
	передачи нервного импульса					
9.	Раздел 9. Витамины: химическая	12	4	4		4
	природа, классификация					_
9.1	Строение и функции водорастворимых	4	1	1		2
	витаминов					
9.2	Строение и функции	4	1	1		2
	жирорастворимых витаминов					
9.3	Характеристика энзимовитаминов,,	4	2	2		2
	гормоновитаминов, редокс-витамиов,					
	этапы метаболизма, причины гипо-,					
	гипер- и авитаминозов (эндогенные,					
	экзогенные).				1	
	Итого	108	36	36		36

3.3 Содержание дисциплины

Раздел 1. Определение «Медицинская биохимия». Основные направления развития

Дисциплина «Медицинская биохимия», относится к фундаментальным наукам и связана с изучением биохимии гомеостаза человека. При изучении этой дисциплины необходимы знания биологических и химических наук с целью раскрытия механизмов, определяющих здоровье, адаптацию организма к неблагоприятным факторам и возможных причин и последствий различных заболеваний. Данная дисциплина включает изучение биохимического состава биологических сред, клеток и тканей организма человека, а также изменения в период развития болезни и её лечения. Рассматриваются вопросы биохимических изменений метаболизма углеводов, белков, липидов, нуклеотидов и нуклеиновых кислот в

организме человека. Эта область науки о человеке позволяет не только выяснить протекание биохимических процессов метаболизма здорового человека, но и устанавливать, чем болен человек, предсказать появление болезни в будущем, что, в конечном итоге, направленно на улучшение качества и продолжительности жизни

Изучение этой дисциплины «Медицинская биохимия» необходимо для развития новейших направлений медицинской биотехнологии и медицины.

Раздел 2. Метаболизм. Обмен белков у человека. Биосинтез белка

Тема 1. Роль белка в питании, биологическая ценность, принципы нормирования, биохимические нарушения.

Значение строительных, защитных, белков ферментативных в организме. Роль белков различного происхождения в питании, биологическая ценность белков, принципы нормирования, биохимические нарушения при его недостаточности (квашиоркор). Желудочный, и панкреатический соки: физико-химические свойства, химический состав, физиологическое значение его компонентов, регуляция секреции.

Сложные белки нуклеопротеиды (хроматин, рибосомы): химический состав, функции. Классификация гистоновых и негистоновых белков, особенности состава, функции. Механизмы переваривания нуклеопротеидов и всасывания продуктов гидролиза.

Тема 2. Биосинтез белка: краткая характеристика основных этапов. Посттрансляционная модификация и фолдинг белков.

Биосинтез белка: краткая характеристика основных этапов. Посттрансляционная модификация и фолдинг белков. Превращение белков — протеолиз: виды. Белки ферменты протеазы, биологическое значение. Особенности катаболизма белка в лизосомах и протеасомах. Пул аминокислот, пути использования фонда аминокислот в клетке.

Раздел 3. Обмен аминокислот

Тема 3.1. Обмен аминокислот в клетке: реакции декарбоксилирования, переаминирования, дезаминирования

Обмен дикарбоновых аминокислот и их амидов, аминокислот с разветвленной боковой цепью: схема путей обмена, реакции, ферменты, тканевые особенности, биологическая роль. Обмен метионина, цистеина, серина и глицина. Реакции трансметилирования на примере образования холина и адреналина, значение. Роль витаминов В9 и В12 в регенерации метионина и обмене одноуглеродных фрагментов, биохимические нарушения и клинические проявления недостаточности этих витаминов. Обмен ароматических аминокислот: схема путей обмена и их значение, реакции биосинтеза адреналина, значение, роль витамина С.

Тема 3.2. Обмен кетогенных и глюкогенных аминокислот. Понятие о заменимых, незаменимых, частично и условно заменимых аминокислотах.

Понятие глюкогенные аминокислоты. Кетогенные аминокислоты, пути превращения кетогенных кислот лизина и лейцина. Биохимические пути окисления и образование ацетил-SKoA., синтез кетоновых тел (кетогенных), жирных кислот и холестерола. Превращение смещанных аминокислот, образование пирувата, метаболитов ЦТК и ацетил-SKoA (фенилаланин, тирозин, изолейцин, триптофан). Включение в липиды, так и в глюконеогенез.

Тема 3.3. Цикл мочевинообразования (орнитиновый цикл, цикл мочевины, цикл Кребса-Ганзелейта). Обмен аргинина.

Ферментативный процесс превращения орнитина - орнитиновый цикл, цикл мочевины, цикличность ферментативного процесса, синтез мочевины. Роль орнитинового цикла в пути ассимиляции аммиака (его обезвреживании). Энзимопатии цикла мочевинообразования, биохимическая диагностика. Особый путь оразования аргинина и распада.

Раздел 4. Биохимия эндокринной регуляции

Тема 4.1. Уровни и принципы организации регуляторных систем: нервной, эндокринной, иммунной.

Уровни регуляции различных систем в организме. Принципы организации регуляторных систем: нервной, эндокринной, иммунной. Роль гормонов в регуляции сигналов.

Этапы метаболизма гормонов: биосинтез, активация, секреция, транспорт по кровотоку, рецепция и механизм действия, инактивация и удаление из организма, клиническое значение.

Тема 4.2. Классификации гормонов по химической природе, месту биосинтеза, физиологическим эффектам.

Химическое строение гормонов. Классификации гормонов по химической природе, месту биосинтеза, физиологическим эффектам. Этапы метаболизма гормонов. Рецепторы гормонов: виды, особенности строения, локализации. Внутриклеточные посредники действия гормонов: циклические нуклеотиды, пептиды, производные жирных кислот, ИТФ, ДГ, Са2+ и др. Химическая природа, структура, обмен, функции.

Тема 4.3. Тиреоидные гормоны (Т3, Т4): химическая природа, структура, этапы биосинтеза, регуляция, механизм действия.

Тиреоидные гормоны (Т3, Т4): химическая природа, структура, этапы биосинтеза, регуляция, механизм действия, метаболические и физиологические эффекты, причины нарушений, последствия, профилактика. Обмен йода в организме. Гормоны гипоталамуса, гипофиза: химическая природа, механизм действия, метаболические и физиологические эффекты. Кальцитриол (1,25(ОН)2Д3): реакции образование из холестерола, регуляция, механизм действия, физиологическая роль.

Тема 4.4. Гормоны гипоталамуса, гипофиза: химическая природа, механизм действия. Стероидные гормоны: строение, механизм действия. Пути синтеза стероидных гормонов:, ядерные и цитозольные эффекты глюкокортикоидов. Нарушение биохимических превращений стероидной природы.

Раздел 5. Кровь: функции, состав, физико- химические свойства

Тема 5.1. Белки сыворотки крови: фракции, функции, диагностическое значение электрофореграмм.

Кровь: функции, состав, физико- химические свойства (возрастные особенности), значение анализа в клинической практике. Белки сыворотки крови: фракции. Состав общего белка сыворотки крови, структура белков и функции. Разделение на фракции в разделяющей среде под действием электрического поля. Основные пять стандартных фракций: альбумин, альфа-1-, альфа-2-, бета- (фракции бета-1- и бета-2-глобулинов) и гамма-глобулины.

Фракция бета-глобулинов: трансферрин (белок-переносчик железа), гемопексин (участие в метаболизме железа, связывании гема при метаболизме гемсодержащих белков).

Функции фракций, диагностическое значение электрофореграмм.

Тема 5.2. Билирубин: физико-химические свойства, обмен, диагностическое значение определения содержания в крови и моче.

Желтый пигмент билирубин: физико-химические свойства, обмен, диагностическое значение определения содержания в крови и моче. Коньюгированный и неконьюгированный билирубин: механизмы образования, физико-химические свойства, диагностическое значение определения. Роль билирубина в распаде эритроцитов.

Тема 5.3. Гемоглобин и миоглобин: строение.

Эритроцит: особенности структуры, химического состава, роль в метаболизме белков, жиров, углеводов. Участие эритроцитов в пентозофосфатном и 2,3- дифосфоглицератном шунте, гликолизе; особенности функционирования, причины и последствия нарушений эритроцитов.

Строение гемоглобина и функции. Реакции биосинтеза гема: значение, регуляция, нарушения порфирииа. Механизмы транспорта О2 и СО2 кровью: реакции, биологическое значение. Роль в гемоглобина в обмене, диагностическое значение определения в крови и моче. Производные и виды гемоглобина. Обмен железа в организме: биологическое и клиническое значение.

Тема 5.4. Минеральные компоненты крови (Mn, Mg, Cu, Zn, Se, Co, I2): биологическая роль, биохимические нарушения

Электролиты крови (Na+, K+, C1-, HCO₃-): биологическая роль, биохимические нарушения при недостаточности, диагностическое значение. Минеральные компоненты крови (Mn, Mg, Cu, Zn, Se, Co, I2): биологическая роль, биохимические нарушения при недостаточности. Остаточные

азот: состав, физиологическая роль мочевины, аминокислот, креатина, креатинина, мочевой кислоты, животного индикана. Диагностическое значение определения остаточного азота и перечисленных компонентов.

Раздел 6. Моча: физико-химические свойства

Тема 6.1. Биохимический состав мочи, диагностическое значение исследования общих свойств.

Компоненты мочи: вода, растворенные азотистые продукты обмена белков (мочевина, мочевая кислота, креатинин и др.), минеральные соли. Мочевина - главный органический азотсодержащий компонент мочи, причины повышенного выделения мочевины — гиперуриурия. Мочевая кислота - конечный продукт катаболизма пуриновых нуклеотидов. Креатинин - конечный продукт азотистого обмена. Углеводы в моче: нормальное и патологическое количество. Белок в моче: протеинурия, альбуминурия.

Тема 6.2. Механизм образования первичной мочи

Роль почек в процессе образования мочи. Физико-химические свойства мочи. Механизм образования первичной мочи, регуляция, физико-химические свойства. Клиренс инулина, креатинина, значение определения. Функции почек в метаболизме белков, жиров, углеводов в моче.

Раздел 7. Функциональная биохимия тканей и органов

Тема 7.1. Печень: особенности обмена углеводов, липидов, белков и аминокислот Роль печени в обмене углеводов, липидов, белков и аминокислот, биохимические показатели крови, отражающие эти процессы. Желчь: химический состав, биологическая роль, механизмы возникновения желчных камней. Печень:

Тема 7.2. Печень: механизмы обезвреживания экзогенных и эндогенных токсических вешеств

Механизмы обезвреживания экзогенных и эндогенных токсических веществ печенью: две фазы обезвреживания путем химической модификации: гидроксилирование гидрофобных веществ и реакция конъюгации. Реакции гниения и обезвреживания продуктов гидролиза белков. Значение определения животного индикана в моче.

- **Тема** 7.3 Соединительная ткань: состав, функции; строение коллагена и эластина, значение. Белки соединительной ткани (коллаген, эластин, фибронектин) Состав, функции; строение соединительной ткани.. Белки соединительной ткани (коллаген, эластин, фибронектин): особенности, структуры аминокислотного состава. Физико-химические
- стин, фиоронектин): осооенности, структуры аминокислотного состава. Физико-химические свойства, функции. Метаболизм коллагена: этапы, коферменты, косубстраты, субстраты. Значение определения оксипролина в моче. Протеогликаны, гликозаминогликаны: строение, функции, обмен, нарушение обмена (мукополисахаридозы).
- *Тема 7.4*. Головной мозг: химический состав сухого остатка, белого и серого вещества, нейронов, синапсов, нервных волокон
- : химический состав сухого остатка, белого и серого вещества Головной мозг, нейронов, синапсов, нервных волокон. Особенности обмена энергетического, углеводного, липидного, нуклеотидного и нуклеиновых кислот, белков и аминокислот. Механизмы передачи нервного импульса по нервному волокну. Виды синапсов и рецепторов.
- *Тема 7.5*. Мышечная ткань: виды, функции, особенности внутриклеточных структур и метаболизма

Мышечное волокно (мышечная клетка): особенности структуры, химического состава, метаболизма, функции. Белки миофибрилл: состав, структуры, функции. Виды мышечных тканей, функции, особенности внутриклеточных структур. Механизмы энергообеспечения мышечной ткани в состоянии покоя и нагрузки. Креатинфосфокиназный механизм транспорта энергии в мышечной клетке. Миокард: особенности структуры, метаболизма, функции.

Раздел 8. Особенности энергетического обмена человека: углеводов, липидов, нуклеотидов и нуклеиновых кислот

Тема 8.1. Углеводный и липидный обмен.

Стадии обмена углеводов в организме человека: расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, всасывание

моносахаридов из кишечника в кровь. Синтез и распад гликогена в тканях (гликогенез и гликогенолиз) в печени. Конечный этап (выделение продуктов обмена — воды и углекислого газа из организма).

Обмен липидов. Биохимическая классификация липидов пищи: жиры животного и ненасыщенные растительного происхождения; жирные кислоты насыщенные (мононенасыщенные и полиненасыщенные). Стадии переваривания жиров в тонком кишечнике, участие панкреатической липазы гастроинтестинального гормона И холецистокинина. Всасывание жирных кислот, роль желчных кислот, образование холеиновых комплексов. Утилизация глицерина при ресинтезе жиров в организме человека. Биохимия патогенеза липилного обмена.

Тема 8.2. Обмен нуклеотидов и нуклеиновых кислот

Синтез пуринов, энергозатратные особенности биосинтеза. Поддержание в физиологических условиях пула пуринов за счет путей их реутилизации, особенности биосинтеза у быстроделящихся клеток. Доля всасывания нуклеотидов остатков нуклеиновых кислот из пищи. Роль предшественника пуринов — инозината (IMP) и аминокислот глутамина, аспартата и глицина в биосинтезе пуринов. Реутилизация пуринов

Биосинтез пиримидиновых нуклеотидов: Конденсация аспартата и карбамоилфосфата с образованием N-карбамоиласпартата, присоединение рибозо-5-фосфата (PRPP). Роль фермента УМФ-синтазы.

Тема 8.3. Обмен нейромедиаторов. Механизмы передачи нервного импульса. Обмен нейромедиаторов (ацетилхолина, катехоламинов, серотонина, ГАМК, глутаминовой кислоты, глицина, гистамина). Механизмы передачи нервного импульса через синапсы.

Раздел 9. Витамины: химическая природа, классификация.

Тема 9.1. Строение и функции водорастворимых витаминов.

Витамины: химическая природа, классификация по растворимости в воде и функциям. Витамины В6, РиС,

физиологические эффекты, профилактические дозы.

Тема 9.2. Строение и функции жирорастворимых витаминов: фолиевая кислота, витамины А, Д, К. Источники жирорастворимых витаминов для организма, механизм действия, метаболические и

Тема 9.3. Характеристика энзимовитаминов,, гормоновитаминов, редокс-витамиов,

Особенности химического состава и физико-химических свойств энзимовитаминов, гормоновитамины, редокс-витаминыов. Этапы метаболизма, причины гипо-, гипер- и авитаминозов (эндогенные, экзогенные).

Тематика семинарских/практических и лабораторных занятий

3.4.1. Семинарские/практические занятия

медицинской биотехнологии.

Тема 1. Место медицинской биохимии в развитии системы здравоохранения. Основные приоритетные направления развития медицинской биохимии.

Тема 2. Общие пути обмена белка в организме. Особенности биосинтеза у человека и животных. Состав белков в крови человека.

Тема 3. Обмен аминокислот в организме человека. Незаменимые аминокислоты, особенности метаболизма.

Тема 4. Интеграция и регуляция азотистого обмена

Тема 5. Частные пути обмена аминокислот

Тема 6. Функциональная биохимия мышечной ткани

Тема 7. Функциональная биохимия соединительной и костной тканей

Тема 8. Биохимия крови. Контроль белков в крови.

Тема 9. Биохимия мочи. Контроль белков в моче.

- Тема 10. Биохимия гормональной регуляции стероидных гормонов: механизм действия.
- Тема 11. Биохимия гормональной регуляции тиреоидных гормонов (Т3, Т4), механизм действия.
- Тема 12. Биохимия гормональной регуляции гормона инсулина. Получение генно-инженерного гормона инсулина, особенности продуцентов.
- Тема 13. Биохимия гормональной регуляции гормона соматотропина. Получение генно-инженерного гормона соматотропина, особенности продуцентов.
- Тема 14. Ферменты в медицинских технологиях. Биохимические процессы использования ферментов в энзимодиагностике, энзимотерапии и энзимопатологии.
- Тема 15. Дыхательная функция крови: биохимические процессы переноса кислорода и углекислого газа.
- Тема 16. Водно-электролитный обмен в крови.
- Тема 17. Функциональная биохимия соединительной и костной тканей
- Тема 18. Функциональная биохимия нервной ткани: головного мозга и нейронов.

3.4.2. Лабораторные занятия

Лабораторные занятия учебным планом не предусмотрены.

3.4 Тематика курсовых проектов (курсовых работ)

Курсовые работы учебным планом не предусмотрены.

4. Учебно-методическое и информационное обеспечение

4.1 Нормативные документы и ГОСТы

1. ГОСТ Р 8.891-2015. Национальный стандарт РФ. Государственная система обеспечения единства измерений. Измерительные и индикаторные биохимические тест-системы. Технологические и метрологические требования. Основные положения. Утвержден и введен в действие Приказом Федерального агентства по техническому регулированию и метрологии от 31 августа 2015 г. N 1208-ст

4.2. Основная литература

- 408 c.

- 1. Глухов А.И., Биологическая химия. Учебник. / А.И. Глухов, С.Е. Северин., Т.Л. Алейникова, С.А. Силаева. Изд-во МИА, М. 2023. 504 с.
- 2. Будкевич Е. В., Будкевич Р. О. Биомедицинские нанотехнологии: учебное пособие. Изд-во Лань, 3-е изд. 2022. -176 с.
- 3. Кольман Я., Рём К.-Г. Наглядная биохимия. / Я. Кольман, К.-Г. Рём ; пер. с англ. Т.П. Мосоловой. Москва: изд-во Лаборатория знаний. 2023. -509 с.
- 4. Лелевич, В. В. Биохимия патологических процессов : пособие для студентов лечебного факультета (специальность 1-79 01 01 Лечебное дело) и медико-диагностического факультета (специальность 1-79 01 04 Медико-диагностическое дело) / В. В. Лелевич, В. М. Шейбак, Н. Э. Петушок ; под ред. проф. В. В. Лелевича. Гродно : ГрГМУ, 2016. 136 с.
- 5. Луценко С.В., Фельдман Н.Б., Свистунов А.А. Нанобиотехнология/ С.В. Луценко, Н.Б. Фельдман, А.А. Свистунов. М. Изд-во Первого МГМУ имени И.М. Сеченова. 2015. 276 с. 5. Маршалл В.Дж. Клиническая биохимия. /В.Дж. Маршал. Пер. с англ. Изд-во Бином. 2023.

6. Станишевский Я.М., Промышленная биотехнология лекарственных средств [Электронный ресурс] : учебное пособие / Я. М. Станишевский. — М. : ГЭОТАР-Медиа, 2021. — 144 с. — ISBN 978-5-9704-5845-7 — Режим доступа: http://www.studmedlib.ru/book/ISBN9785970458457.html

4.3. Дополнительная литература

- 1. Кольман, Ян. Наглядная биохимия : [справочник] / Я. Кольман, К.-Г. Рём ; пер. с нем. Л. В. Козлова, Е. С. Левиной, П. Д. Решетова под ред. П. Д. Решетова, Т. И. Соркиной .— 2-е изд .— Москва : Мир, 2004 .— 469 с.
- 2. Уша, Б. В. Нанобиотехнология для диагностики и коррекции болезней печени : монография / Б. В. Уша, А. Концевова. Германия : LAP LAMBERT Acad. Publ., 2015. 224 с. ISBN 978-3-659-70718-6. Текст : электронный. —

URL: https://new.znanium.com/catalog/product/1064881

4.4. Лицензионное и свободно распространяемое программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при наличии);

- 1. Автоматизированная образовательная среда университета.
- 2. Балльно-рейтинговая система контроля качества освоения образовательной программы в автоматизированной образовательной системе Университета.

4.5. Современные профессиональные базы данных и информационные справочные системы

Перечень ресурсов информационно - телекоммуникационной сети «Интернет», необходимых для освоения дисциплины:

- 1. http://molbiol.ru/
- 2. PubMed (U.S. National Library of Medicine National Institutes of Health http://www.ncbi.nlm.nih.gov/pubmed),
- 3. GenBank (National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/genbank/), EMBL (European Molecular Biology Laboratory http://www.embl.org/),
- 4. SWISS-PROT (Swiss Protein Databank http://www.ebi.ac.uk/uniprot/), PDB (PDBsum) (Protein Data Bank http://www.rcsb.org),
- 5. CATH (Class, Architecture, Topology, Homology

http://www.biochem.ucl.ac.uk/bsm/cath.

6. SCOP (Structural Classification of Proteins

http://scop.mrc-lmb.cam.ac.uk/scop

7. http://www.books-up.ru (электронная библиотечная система);

5. Материально-техническое обеспечение

Лекционная аудитория кафедры «ХимБиотех» Ав5504. (115280, г. Москва, ул. Автозаводская, д. 16 стр. 1 (корпус 5)), оборудованная: столы учебные со скамьями, аудиторная доска, мультимедийный комплекс (переносной проектор, ноутбук). Рабочее место преподавателя: стол, стул.

Аудитория для семинарских и практических занятий кафедры «ХимБиотех» Ав5404а (115280, г. Москва, ул. Автозаводская, д. 16 стр. 1), оборудованная: столы учебные со скамьями, аудиторная доска, мультимедийный комплекс (переносной проектор, ноутбук). Рабочее место преподавателя: стол, стул.

6. Методические рекомендации

6.3. Методические рекомендации для преподавателя по организации обучения

Обучение по дисциплине «Медицинская биохимия» складывается из контактной работы, включающей лекционные занятия, практические занятия, самостоятельной работы и промежуточной аттестации. Лекционные занятия проводятся с использованием демонстрационного материала в виде презентаций. Практические занятия проходят в учебных аудиториях и учебных лабораториях. В ходе занятий студенты разбирают и обсуждают вопросы по соответствующим разделам и темам дисциплины, выполняют теоретические задания. Коллоквиум является важным видом занятия, в рамках которого проводится текущий рубежный, а также текущий итоговый контроль успеваемости студента. При подготовке к коллоквиумам студенту следует внимательно изучить материалы лекций и рекомендуемую литературу, а также проработать практические задачи, которые разбирались на занятиях или были рекомендованы для самостоятельного решения.

Для реализации компетентностного подхода в учебном процессе широко используются активные и интерактивные формы проведения занятий (использование интернет-фильмов, иллюстрирующих различные молекулярные процессы, использование интернет-ресурсов для подготовки к занятиям и самопроверки, решение ситуационных задач, групповые дискуссии) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Самостоятельная работа студента направлена на подготовку к текущему тематическому, текущему рубежному и текущему итоговому контролям успеваемости. Самостоятельная работа включает в себя проработку лекционных материалов, изучение рекомендованной учебной литературы, изучение информации, публикуемой в периодической печати и представленной в Интернете и написание реферата по предложенной теме.

6.4. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Медицинская биохимия» предусматривает лекции и практические занятия каждую неделю. Изучение дисциплины завершается экзаменом. Успешное изучение дисциплины требует посещения лекций, активной работы на практических занятиях, выполнения учебных заданий преподавателя, ознакомления с основной и дополнительной литературой.

При подготовке к лекционным занятиям студентам необходимо:

- перед очередной лекцией необходимо просмотреть по конспекту материал предыдущей лекции.
- при затруднениях в восприятии материала следует обратиться к основным литературным источникам. Если разобраться в материале опять не удалось, то обратитесь к лектору (по графику его консультаций) или к преподавателю на практических занятиях.

Практические занятия являются частью изучения наиболее важных тем учебной дисциплины. Они служат для закрепления изученного материала, развития умений и навыков выполнения экспериментальных работ и подготовки докладов, сообщений, приобретения

опыта устных публичных выступлений, ведения дискуссии, аргументации и защиты выдвигаемых положений, а также для контроля преподавателем степени подготовленности студентов по изучаемой дисциплине.

7. Фонд оценочных средств

7.1 Методы контроля и оценивания результатов обучения

При изучении дисциплины «Медицинская биохимия» предусмотрено проведение коллоквиумов по модулям семинарских занятий.

Шкала и критерии оценивания результатов обучения

8. К промежуточной аттестации экзамену допускаются только студенты, выполнившие все виды учебной работы, предусмотренные рабочей программой по дисциплине «Основы биотехнологии» прошли промежуточный контроль, выполнили лабораторные работы, выступили с докладом и т.д.

9.

Шкала оценивания	Описание
Отлично	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует соответствие знаний, умений, навыков приведенным в таблицах показателей, оперирует приобретенными знаниями, умениями, навыками, применяет их в ситуациях повышенной сложности. При этом могут быть допущены незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
Хорошо	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует неполное, правильное соответствие знаний, умений, навыков приведенным в таблицах показателей, либо если при этом были допущены 2-3 несущественные ошибки.
Удовлетворительно	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует соответствие знаний, в котором освещена основная, наиболее важная часть материала, но при этом допущена одна значительная ошибка или неточность.
Неудовлетворительно	Не выполнен один или более видов учебной работы, предусмотренных учебным планом. Студент демонстрирует неполное соответствие знаний, умений, навыков приведенным в таблицах показателей, допускаются значительные ошибки, проявляется отсутствие знаний, умений, навыков по ряду показателей, студент испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.

7.2. Оценочные средства

7.2.1. Текущий контроль

Тестовые задания

1 Вопрос.

Какие клетки, ткани и органы используют кетоновые тела в качестве источника энергии?

- а) головной мозг, печень, эритроциты,
- б) мышечная и нервная ткань, печень,
- в) печень, жировая ткань, миокард, г) нервная ткань, миокард, скелетные мышцы,
- д) легкие, печень, почки.

2 Вопрос.

Как изменяется потребление кислорода и синтез АТФ митохондриями при воздействии на них

- 2,4-динитрофенола разобщителя дыхания и фосфорилирования?
- а) потребление кислорода увеличивается, синтез АТФ увеличивается,
- б) потребление кислорода увеличивается, синтез АТФ уменьшается,
- в) потребление кислорода уменьшается, синтез АТФ увеличивается,
- г) потребление кислорода уменьшается, синтез АТФ уменьшается

3 Вопрос

Укажите биологическую функцию цитохромов с, а и аз

- а) перенос электронов и протонов в дыхательной цепи митохондрий,
- б) участие в реакциях субстратного фосфорилирования,
- в) перенос электронов в дыхательной цепи митохондрий,
- г) перенос протонов в дыхательной цепи митохондрий,
- д) катализ реакций цикла Кребса.

4 Вопрос.

Что из перечисленного происходит подготовительном этапе энергетического обмена с образованием $AT\Phi$?

- а) окислительное фосфорилирование,
- б) дегидрирование кислот в цикле Кребса,
- в) субстратное фосфорилирование в биохимическом пути Эмбдена Мейергофа-Парнаса,
- г) гидролиз питательных веществ до мономеров,
- д) образование пирувата и ацетилКоА.

5 Вопрос

Укажите биологическую роль крахмала

- а) структурный полисахарид растений,
- б) резервный полисахарид животных,
- в) структурный полисахарид животных,
- г) резервный полисахарид растений,
- д) структурный полисахарид членистоногих.

6 Вопрос.

Выберите белки основные фракций в крови:

- а) альбумин, альфа-1-,
- б) альбумин альфа-2-,
- в) гистоны
- г) бета-1-глобулин
- д) бета-2-глобулин.

Вопрос 7.

Выберите из перечисленных гормоны гипофиза

- а) соматотропин
- б) инсулин
- в) кортикотропин

- г) тиреотропин
- д) пролактотропин

8 Вопрос

Выберите из перечисленных гормоны гипофиза

- а) соматотропин
- б) инсулин
- в) адренокортикотропный гормон
- г) тиреотропный гормон
- д) мет-энкефалин

9 Вопрос.

Укажите роль желтого пигмента билирубина

- а) окисление углеводов
- б) распад эритроцитов
- в) окисление липидов
- г) перенос углекислого газа
- д) перенос кислорода

10 Вопрос

Укажите роль красного пигмента гепоглобина

- а) окисление углеводов
- б) распад эритроцитов
- в) окисление липидов
- г) перенос углекислого газа
- д) перенос кислорода

7.2.2. Промежуточная аттестация

- 1. Роль белка в питании, биологическая ценность, принципы нормирования, биохимические нарушения при его недостаточности (квашиоркор).
- 2. Желудочный сок: физико-химические свойства, химический состав, физиологическое значение его компонентов, регуляция секреции, виды кислотности, значение определения. Механизмы пищеварения в желудке (возрастные особенности).
- 3. Сок кишечный и поджелудочной железы: химический состав, значение компонентов, регуляция секреции, участие в механизмах пищеварения белков, жиров, углеводов. Диарея: причины и механизмы возникновения, последствия.
- 4. Нуклеопротеиды (хроматин, рибосомы): химический состав, функции. Классификация гистоновых и негистоновых белков, особенности состава, функции. Механизмы переваривания нуклеопротеидов и всасывания продуктов гидролиза.
- 5. Пуриновые нуклеотиды: строение, схема образования пуринового ядра, синтез из инозиновой кислоты (ИМФ). Катаболизм пуринов. Реакции образования мочевой кислоты из пуриновых нуклеотидов, значение. Гиперурикемия: причины, последствия.
- 6. Пиримидиновые нуклеотиды: строение, синтез из аминокислот, схема образования УМФ, ЦМФ, ТМФ. Катаболизм пиримидиновых нуклеотидов. Оротоацидурия.
- 7. Обмен аминокислот в клетке: реакции декарбоксилирования, ферменты, биологическое значение. Роль реакций декарбоксилирования в синтезе биологически активных веществ (на примере катехоламинов, ацетилхолина, гистамина, серотонина).
- 8. Обмен аминокислот в клетке: реакции переаминирования, ферменты, биологическое значение. Судьба безазотистого остатка аминокислот. Кетогенные и глюкогенные аминокислоты.
- 9. Обмен аминокислот в клетке: понятие о заменимых, незаменимых, частично и условно заменимых аминокислотах. Реакции синтеза заменимых аминокислот (на примере ГЛУ, ГЛН, АСП, АЛА). Связь обмена аминокислот с обменом углеводов и липидов.

- 10. Обмен аминокислот в клетке: реакции прямого и непрямого дезаминирования, ферменты, биологическое значение. Образование аммиака, его токсичность и пути обезвреживания.
- 11. Витамин В6: строение, витамеры, коферментные формы, биологическая роль, участие в обмене аминокислот.
- 12. Цикл мочевинообразования (орнитиновый цикл, цикл мочевины, цикл Кребса- Ганзелейта): локализация в организме, реакции, ферменты, биологическое значение, связь с реакциями дезаминирования и циклом трикарбоновых кислот. Обмен аргинина и орнитина. Энзимопатии цикла мочевинообразования, биохимическая диагностика.
- 13. Биосинтез белка: краткая характеристика основных этапов. Посттрансляционная модификация и фолдинг белков.
- 14. Протеолиз: виды, ферменты, биологическое значение. Особенности катаболизма белка в лизосомах и протеасомах. Пути использования фонда аминокислот в клетке.
- 15. Обмен дикарбоновых аминокислот и их амидов: схема путей обмена, реакции, ферменты, тканевые особенности, биологическая роль.
- 16. Обмен аминокислот с разветвленной боковой цепью: схема путей обмена, реакции, ферменты, тканевые особенности, биологическая роль. Врожденные энзимопатии обмена аминокислот с разветвленной боковой цепью.
- 17. Обмен метионина, цистеина, серина и глицина. Реакции трансметилирования на примере образования холина и адреналина, значение. Роль витаминов В9 и В12 в регенерации метионина и обмене одноуглеродных фрагментов, биохимические нарушения и клинические проявления недостаточности этих витаминов.
- 18. Обмен триптофана: схема путей обмена и их значение, реакции образования серотонина и мелатонина, тканевые особенности, значение.
- 19. Обмен фенилаланина и тирозина: схема путей обмена и их значение, реакции биосинтеза адреналина, значение, роль витамина С.
- 20. Фенилкетонурия: причины и механизм возникновения, биохимические нарушения, диагностические показатели крови и мочи.
- 21. Гуморальные системы регуляции: понятия, типы, общие свойства. Классификации гормонов по химической природе, месту биосинтеза, физиологическим эффектам.
- 22. Уровни и принципы организации регуляторных систем: нервной, эндокринной, иммунной. Этапы метаболизма гормонов: биосинтез, активация, секреция, транспорт по кровотоку, рецепция и механизм действия, инактивация и удаление из организма, клиническое значение.
- 23. Рецепторы гормонов: виды, особенности строения, локализации. Внутриклеточные посредники действия гормонов: циклические нуклеотиды, пептиды, производные жирных кислот, ИТФ, ДГ, Са2+ и др. Химическая природа, структура, обмен, функции.
- 24. Тиреоидные гормоны (Т3, Т4): химическая природа, структура, этапы биосинтеза, регуляция, механизм действия, метаболические и физиологические эффекты, причины нарушений, последствия, профилактика. Обмен йода в организме.
- 25. Гормоны гипоталамуса: химическая природа, механизм действия, метаболические и физиологические эффекты.
- 26. Кальцитриол (1,25(ОН)2Д3): реакции образование из холестерола, регуляция, механизм действия, физиологическая роль.
- 27. Кальций: метаболизм, биологическая роль, механизмы регуляции содержания в крови, нарушения.
- 28. Гормоны стероидной природы: классификация, пути синтеза, механизмы действия, ядерные и цитозольные эффекты глюкокортикоидов.
- 29. Гормоны гипофиза: классификация, механизм действия, метаболические и физиологические эффекты на примере гормона роста.
- 30. Половые гормоны: классификация, механизм действия, метаболические и физиологические эффекты на примере тестостерона и эстрадиола.

- 31. Кровь: функции, состав, физико-химические свойства (возрастные особенности), значение анализа в клинической практике.
- 32. Белки сыворотки крови: фракции, функции, диагностическое значение электрофореграмм.
- 33. Альбумины сыворотки крови: физико-химические свойства, физиологическая роль, диагностическое значение.
- 34. Глобулины сыворотки крови: физиологическое и клиническое значение отдельных представителей □-, □-, фракций.
- 35. Билирубин: физико-химические свойства, обмен, диагностическое значение определения содержания в крови и моче. Коньюгированный и неконьюгированный билирубин: механизмы образования, физико-химические свойства, диагностическое значение определения.
- 36. Реакции биосинтеза гема: значение, регуляция, нарушения (порфирии).
- 37. Обмен железа в организме: биологическое и клиническое значение.
- 38. Электролиты крови (Na+, K+, C1-, HCO3-): биологическая роль, биохимические нарушения при недостаточности, диагностическое значение.
- 39. Минеральные компоненты крови (Mn, Mg, Cu, Zn, Se, Co, I2): биологическая роль, биохимические нарушения при недостаточности.
- 40. Остаточные азот: состав, физиологическая роль мочевины, аминокислот, креатина, креатина, мочевой кислоты, животного индикана. Диагностическое значение определения остаточного азота и перечисленных компонентов.
- 41. Эритроцит: особенности структуры, химического состава, метаболизма белков, жиров, углеводов. Эритроцит: пентозофосфатный и 2,3-дифосфоглицератный шунты гликолиза (схема); особенности функционирования, причины и последствия нарушений.
- 42. Гемоглобин и миоглобин: строение, функции, обмен, диагностическое значение определения в крови и моче. Производные и виды гемоглобина, особенности состава, строение, функции, биологическое клиническое и диагностическое значение.
- 43. Механизмы транспорта О2 и СО2 кровью: реакции, биологическое значение.
- 44. Эритроцит: механизм образования активных форм кислорода, метгемоглобина и антиоксидантной защиты.
- 45. Почка: функции, особенности метаболизма белков, жиров, углеводов.
- 46. Почка: механизм образования первичной мочи, регуляция, физико-химические свойства ультрафиолета. Клиренс инулина, креатинина, значение определения.
- 47. Моча: физико-химические свойства, химический состав, диагностическое значение исследования общих свойств.
- 48. Роль печени в интеграции липидного, углеводного и белкового обменов, значение.
- 49. Печень: особенности обмена углеводов, липидов, белков и аминокислот, биохимические показатели крови, отражающие эти процессы.
- 50. Желчь: химический состав, биологическая роль, механизмы возникновения желчных камней.
- 51. Печень: механизмы обезвреживания экзогенных и эндогенных токсических веществ, примеры.
- 52. Кишечник и печень: реакции гниения и обезвреживания продуктов гидролиза белков, значение определения животного индикана в моче.
- 53. Соединительная ткань: состав, функции; строение коллагена и эластина, значение.
- 54. Белки соединительной ткани (коллаген, эластин, фибронектин): особенности, структуры аминокислотного состава, физико-химических свойств, функции. Метаболизм коллагена: этапы, коферменты, косубстраты, субстраты. Значение определения оксипролина в моче.
- 55. Протеогликаны, гликозаминогликаны: строение, функции, обмен, нарушение обмена (мукополисахаридозы).
- 56. Головной мозг: химический состав сухого остатка, белого и серого вещества, нейронов, синапсов, нервных волокон. Особенности обмена энергетического, углеводного, липидного, нуклеотидного и нуклеиновых кислот, белков и аминокислот.

- 57. Механизмы передачи нервного импульса по нервному волокну. Виды синапсов и рецепторов. Обмен нейромедиаторов (ацетилхолина, катехоламинов, серотонина, ГАМК, глутаминовой кислоты, глицина, гистамина). Механизмы передачи нервного импульса через синапсы.
- 58. Мышечная ткань: виды, функции, особенности внутриклеточных структур и метаболизма.
- 59. Мышечное волокно (мышечная клетка): особенности структуры, химического состава, метаболизма, функции. Белки миофибрилл: состав, структуры, функции.
- 60. Механизмы энергообеспечения мышечной ткани в состоянии покоя и нагрузки. Креатинфосфокиназный механизм транспорта энергии в мышечной клетке.
- 61. Миокард: особенности структуры, метаболизма, функции.
- 62. Витамины: химическая природа, классификация по растворимости в воде и функциям (энзимовитамины, гормоновитамины, редокс-витамины), этапы метаболизма, причины гипо-, гипери авитаминозов (эндогенные, экзогенные).
- 63. Витамины В₆, Р и С, фолиевая кислота, витамины А, Д, К: источники для организма, химическая природа, механизм действия, метаболические и физиологические эффекты, профилактические дозы