Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Максимов Алексей Борисович

Должность: директор департа Мейты ИСТ БРЭСТОВ Ф.Н.И.О. КИЛИНИВЫ С ШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата подписания радобрам высшего образования

8db180d1a3f02ac9e60521a5672742735c18b1d6

(МОСКОВСКИЙ ПОЛИТЕХ)

Транспортный факультет

УТВЕРЖДАЮ

И.о. декана

/М.Р. Рыбакова/

«15» февраля 2024г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Системы автоматизированного проектирования автомобиля

Направление подготовки 23.05.01 Наземные транспортно-технологические средства

> Профиль Перспективные автомобили и электромобили

> > Квалификация

инженер

Формы обучения очная

Москва 2024 г.

Разработчик(и):

Преподаватель, без учёной степени

/Р.Р. Саяхов /

Согласовано:

Заведующий кафедрой, д.т.н., профессор

Jul

А.В. Келлер

Содержание

1.	Ц	ели, задачи и планируемые результаты обучения по дисциплине	4
2.	M	место дисциплины в структуре образовательной программы	7
3.	C	труктура и содержание дисциплины	7
	3.1	Виды учебной работы и трудоемкость	
	3.2	Тематический план изучения дисциплины	8
	3.3	Содержание дисциплины	9
	3.4	Тематика семинарских/практических и лабораторных занятий	10
	3.5	Тематика курсовых проектов (курсовых работ)	
4.	У	чебно-методическое и информационное обеспечение	12
	4.1	Нормативные документы и ГОСТы	12
	4.2	Основная литература	12
	4.3	Дополнительная литература	13
	4.4	Электронные образовательные ресурсы	13
	4.5	Лицензионное и свободно распространяемое программное обеспечение	14
	4.6	Современные профессиональные базы данных и информационные справочные	
	CI	истемы	14
5.	M	Гатериально-техническое обеспечение	14
6.	M	Г етодические рекомендации	14
	6.1	Методические рекомендации для преподавателя по организации обучения	14
	6.2	Методические указания для обучающихся по освоению дисциплины	15
7.	Φ	онд оценочных средств	16
	7.1	Методы контроля и оценивания результатов обучения	16
	7.2	Шкала и критерии оценивания результатов обучения	16
	7.3	Оценочные средства	17

1. Цели, задачи и планируемые результаты обучения по дисциплине

Дисциплина «Системы автоматизированного проектирования автомобиля» представляет собой структурированную базу знаний в области современных ІТ-технологий интеграция современные бизнес-процессы различных компаний. Целью освоения учебной является подготовка специалиста, способного: дисциплины

Уметь:

- Строить 3D модель изделия в NX CAD.
- Разрабатывать базовую архитектуру изделия с помощью программного продукта Simcenter Amesim;
- Проводить расчеты методом имитационного моделирования с помощью программного продукта Simcenter Amesim;
- Проводить отладку численной модели проектируемого изделия с помощью программного продукта Simcenter Amesim.
- Подготавливать расчетные 3D модели компонентов к прочностному расчету в SIMCENTER 3D;
- Выполнять прочностные расчеты компонентов в 3D постановке с применением SIMCENTER 3D;
- Обрабатывать результаты прочностных расчетов в SIMCENTER 3D;
- Проводить валидацию цифрового двойника.
 Знать:
- Принципы сквозного проектирования компонентов и изделий;
- Наборы приложений пакета NX CAD и их функции;
- Интерфейсы и инструменты NX CAD;
- Этапы разработки CAD модели в NX CAD;
- Понятия объектов в Teamcenter;
- Интерфейс и инструмент управления потоками работ по изделию в ПО Teamcenter.
- Назначение системно-ориентированного подхода к проектированию изделий (SDPD);
- Назначение метода разработки концепции будущего изделия (RFLP);
- Принципы построения базовой архитектуры проектируемого изделия;
- Интерфейс и инструменты ПО Simcenter Amesim;
- Виды взаимосвязей между элементами базовой архитектуры и способы их построения в ПО Simcenter Amesim;
- Алгоритмы создания пользовательских библиотек в ПО Simcenter Amesim;
- Положения теории оптимизации;
- Методы решения задач оптимизации;
- Программные комплексы для решения задач оптимизации;

- Назначение метода имитационного моделирования;
- Принципы работы со встроенными библиотеками ПО Simcenter Amesim;
- Принципы построения многокритериальных моделей на основе требований в 1D постановке на всех этапах жизненного цикла изделия;
- Способы отладки численных моделей проектируемого изделия в ПО Simcenter Amesim.
- Виды и назначение встроенных библиотек ПО Simcenter Amesim в области машиностроения.
- Требования к твердотельной модели изделия для проведения прочностных расчётов в ПО SIMCENTER 3D;
- Этапы подготовки твердотельной модели и методы оценки качества подготовки твердотельной модели к прочностным расчётам в ПО SIMCENTER 3D;
- Этапы построения расчётной конечно-элементной сетки;
- Алгоритм задания физико-механических свойств материалов в ПО SIMCENTER 3D;
- Методы задания граничных условий и нагрузок для построенной модели изделия в ПО SIMCENTER 3D;
- Методы расчёта напряженно-деформированного состояния изделия в ПО SIMCENTER 3D;
- Инструменты для вывода результатов прочностного расчёта в виде данных для графиков, таблиц;
- Инструменты для графического отображения результатов прочностного расчёта на модели;
- Принципы валидации расчетного исследования, выполненного в ПО SIMCENTER 3D;
- Процедуру (методику) валидизации цифрового двойника на базе прочностных расчетов в SIMCENTER 3D;
- Способы интерпретации результатов валидации цифрового двойника и принятие решения об отладке 3D модели.

Основными изучения дисциплины является получение задачами профессиональных знаний В области перспективных студентами информационныхи интеллектуальных систем; систем обработки больших данных в условиях выполнения программы цифровой экономики Российской Федерации, в том числе и в области транспорта. Цифровые технологии в условиях жесткой конкуренции являются серьезным конкурентным преимуществом ДЛЯ формирования рынков новых новых функционирования рынков; для трансформирования операционных процессов;

обслуживания мультимодальных перевозок; информационно-технологическое обеспечение управлением транспортно-логистической деятельностьюи создания единого информационного пространства. Цифровая логистика также возникает как ответ на вызовы цифровой экономики, для традиционного сектора транспорта логистики, такие как стремительно изменяющаяся, сверхконкурентная среда, сложность цепочек поставок, быстрые измения ожиданий клиентов и ограниченные ресурсы инфраструктуры.

Обучение ПО дисциплине

» направлено на формирование у обучающихся

педующих компетенций: Код и наименование компетенций	Индикаторы достижения компетенции
ПК-6. Способен подготовить нормативно-техническую документацию на ATC.	-6.1.
	, (), -
	; -6.2.
	, (),
	-6.3. -
	·

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к обязательной части блока Б1 «Дисциплины (модули)».

Содержательно она связана со следующими входящими в ООП магистратуры дисциплинами:

- Основы научных исследований.
- Конструирование

3. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетные единиц (108 часов).

3.1 Виды учебной работы и трудоемкость (по формам обучения)

3.1.1. Очная форма обучения

№ п/п	Вид учебной работы	Количество часов	Семестры 8
1	Аудиторные занятия	54	54
	В том числе:		
1.1	Лекции		
1.2	Семинарские/практические занятия		
1.3	Лабораторные занятия		54
2	Самостоятельная работа	54	54
3	Промежуточная аттестация		

Зачет		
Итого	108	

3.2 Тематический план изучения дисциплины (по формам обучения)

3.2.1. Очная форма обучения

		Трудоемкость, час					
			Аудиторная работа				в
№ п/п	, , , , , , , , , , , , , , , , , , ,		Лекции	Семинарские/	Лабораторные ⁷ занятия	Практическая одготовка	- Самостоятельная работа
1	Основные принципы и функциональные возможности Siemens NX CAD	8	-	-	4	-	·
2	Проектирование в NX CAD и Teamcenter	9	-	-	4	-	5
3	Основы системного проектирования	8	-	-	4	-	4
4	Программная реализация проектирования в ПО Simcenter Amesim	9	-	-	4	-	5
5	Разработка имитационной модели – создание базовой архитектуры в ПО Simcenter Amesim	9	-	-	5	-	4
6	Виртуальный прототип изделия. Современные методы численного моделирования для решения задач прочности	9	-	-	5	-	4
7	Основные принципы и функциональные возможности SINCENTER 3D для создания виртуального прототипа изделий	8	-	-	4	-	4
8	Подготовка расчетных 3D моделей к прочностному расчету в SIMCENTER 3D	8	-	-	4	-	4
9	Построение сеточной модели в SIMCENTER 3D	8	-	-	4	-	4
10	Задание нагрузок и граничных условий применительно модели SIMCENTER 3D	8	-	-	4	-	4
11	Физические модели и решатели в SIMCENTER 3D	8	-	-	4	-	4
12	Обработка результатов прочностных расчетов в SIMCENTER 3D	8	-	-	4	-	4

13	Проведение валидизации цифрового	8	-	-	4	-	4
	двойника на основе прочностного						
	расчета в SIMCENTER 3D						
	Итого	108			54	-	54

3.3 Содержание дисциплины

- 1. Интерфейс и инструмент управления потоками работ в ПО Teamcenter
- 2. Виртуальный прототип изделия. Методы и основы сквозного проектирования. Принципы сквозного проектирования компонентов и изделий.
- 3. Принципы и функциональные возможности Siemens NX CAD для проектирования виртуального прототипа изделия. Набор приложений пакета NX CAD и их функции.
- 4. Технологии и инструменты работы с модулем Sketch
- 5. Требования к твердотельной модели изделия для проведения прочностных расчётов в ПО SIMCENTER 3D. Этапы подготовки твердотельной геометрии с помощью базовых инструментов NX CAD.
- 6. Этапы разработки CAD модели в NX CAD и Teamcenter
- 7. Модуль работы с полными сборками и сборочными единицами
- 8. Междисциплинарный подход для разработки сложных изделий. Системное проектирование. Назначение системноориентированного подхода к проектированию изделий (SDPD). Методы системного проектирования (RFLP, методы имитационного моделирования). Принципы построения базовой архитектуры проектируемого изделия
- 9. Методы имитационного моделирования. Принципы построения многокритериальных моделей на основе требований в 1D постановке на всех этапах жизненного цикла изделия
- 10.Программные решения для системного проектирования (ПО Simcenter Amesim). Интерфейс и инструменты ПО Simcenter Amesim. Порядок работы со встроенными библиотеками ПО Simcenter Amesim. Кейсы по работе со встроенными библиотеками ПО Simcenter Amesim (опыт машиностроительных предприятий)
- 11. Теория оптимизации. Методы решения задач оптимизации. Программные комплексы для решения задач оптимизации
- 12. Технологии работы в ПО Simcenter Amesim. Методика отладки численных моделей проектируемого изделия в ПО Simcenter

- Amesim. Виды взаимосвязей между элементами базовой архитектуры и способы их построения в ПО Simcenter Amesim
- 13.Использование и создание пользовательских библиотек ПО Simcenter Amesim для моделирования двигателей и силовых установок
- 14.Виртуальный прототип изделия. Методы численного моделирования для решения задач прочности:1D-CAE моделирование без 3D, 3D-CAD проектирование, 3D-CAE моделирование (газодинамика, тепло, прочность, трещиностойкость, динамика, вибрации, акустика), 1D-CAE системное моделирование, ко-симуляция с 3D-CAE
- 15. Принципы и функциональные возможности Simcenter 3D для создания виртуального прототипа изделия. Требования к прочностным расчетам в ПО SIMCENTER 3D
- 16. Этапы подготовки твердотельной модели и методы оценки качества подготовки твердотельной модели к прочностным расчётам в ПО SIMCENTER 3D
- 17. Алгоритм задания исходных данных и проведения прочностных расчетов в ПО SIMCENTER 3D.
- 18. Порядок построения сеточной модели в ПО SIMCENTER 3D
- 19.Методы задания граничных условий и нагрузок твердотельной модели изделия в ПО SIMCENTER 3D. Алгоритмы подготовки расчетной геометрии встроенными средствами Simcenter 3D
- 20.Порядок и этапы задания нагрузок и граничных условий применительно к модели в ПО SIMCENTER 3D
- 21. Физические модели и решатели ПО SIMCENTER 3D
- 22. Запуск решения и обработка результатов численного моделирования в ПО SIMCENTER 3D
- 23. Принципы анализа (интерпретации) результатов виртуальных испытаний цифрового двойника в ПО SIMCENTER 3D
- 24. Процедуры и этапы валидизации цифрового двойника в ПО SIMCENTER 3D

3.4 Тематика семинарских/практических и лабораторных занятий

3.4.1. Семинарские/практические занятия

1. Разработка виртуального протитопа и CAD модели с использованием Siemens NX CAD и Teamcenter (работа с

- интерфейсом, проведение аналитических расчетов, визуализация и компановка в графическом виде, управление потоками работ)
- 2. Создание и редактирование эскизов в модуле Sketch
- 3. Разработка твердотельной геометрии с помощью базовых инструментов NX CAD.
- 4. Решение инженерных задач в модуле работы с полными сборками и сборочными единицами
- 5. Порядок выполнения работ по трехмерному проектированию с учетом специфики машиностроительных предприятий: решение кейсов по применению систем трехмерного проектирования
- 6. Проектирование в ПО Simcenter Amesim: создания численных моделей из компонентов базовых общеинженерных библиотек (двигателей, силовых установок) средствами ПК Simcenter Amesim
- 7. Разработка базовой архитектуры автомобиля, построение первичных функциональных моделей, проведение расчётов и отладки моделей в ПО Simcenter Amesim
- 8. Моделирование двигателя автомобиля в ПО Simcenter Amesim с использованием встроенных библиотек ПО Simcenter Amesim

3.4.2. Лабораторные занятия

- 1. Подготовка твердотельной модели встроенными средствами ПО SIMCENTER 3D
- 2. Проведение оценки качества подготовки твердотельной модели к прочностным расчетам в ПО SIMCENTER 3D
- 3. Построение расчетной конечно-элементной сетки твердотельной модели в ПО SIMCENTER 3D
- 4. Проведение расчетов напряженно-деформированного состояния изделия в ПО SIMCENTER 3D. Внедрение инструментов обработки результатов прочностного расчёта и принципы валидации расчетного исследования, выполненного в ПО SIMCENTER 3D
- 5. Задание нагрузок и граничных условий применительно к модели в ПО SIMCENTER 3D
- 6. Создание физических моделей и решатели ПО SIMCENTER 3D
- 7. Проведение пусковых работ и обработка результатов численного моделирования в ПО SIMCENTER 3D
- 8. Анализ сходимости и достоверности результатов моделирования в ПО SIMCENTER 3D

3.5 Тематика курсовых проектов (курсовых работ)

Курсовой проект не предусмотрен по учебному плану

4. Учебно-методическое и информационное обеспечение

4.1 Нормативные документы и ГОСТы

ГОСТ Р 70249-2022 НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ СИСТЕМЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ Высокоавтоматизированные транспортные средства. Термины и определения

ГОСТ Р 58837-2020 НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ АВТОМОБИЛЬНЫЕ ТРАНСПОРТНЫЕ СРЕДСТВА СИСТЕМЫ АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ ОБЩИЕ ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ

ГОСТ 2.103-2013 Единая система конструкторской документации. Стадии разработки. – М.: Стандартинформ, 2019. – 8 с.

ГОСТ Р 57100-2016/ISO/IEC/IEEE 42010:2011 Системная и программная инженерия. Описание архитектуры. – М.: Стандартинформ, 2016. – 36 с.

4.2 Основная литература

- 1. В.В. Беспалов. Основы проектирования и САПР. / Методические указания к выполнению лабораторных работ. Томск, изд-во ТПУ, 2010.- 13 с.
- 2. Косяков Александр, Свит У. и др. Системная инженерия. Принципы и практика. Пер. с англ. Под ред. В.К. Батоврина. М.: ДМК Пресс, 2014. 636 с. ISBN 978-5-97060-122-8.
- 3. С.А.Орлов Программная инженерия. Питер, 2016 г.
- Семакин, Игорь Геннадьевич. Программирование, численные методы и математическое моделирования [Текст]: учебное пособие / И. Г. Семакин, О. Л. Русакова, Е. Л. Тарунин, А. П. Шкарапута. Москва: КНОРУС, 2017. 297 с.; см.; ISBN 978-5-406-00862-1
- 5. Тарасов, В.Н. Численные методы. Теория, алгоритмы, программы [Текст]: Учебное пособие предназначено для студентов специальностей направления 230100 Информатика и вычислительная техника. Самара: ПГУТИ, 2017. 266 с.; см.; ISBN 5-7410-0451-2
- 6. Копанев, Д.Б. Процесс Siemens SDPD (системно-ориентированный подход к разработке изделий) в задачах разработки автомобилей, специальной и внедорожной техники. СПб.: Siemens Industry Software, 2015.

- 7. Путинцев, С.В. Механические потери в поршневых двигателях: специальные главы конструирования, расчёта и испытаний. Электронное учебное издание / С.В. Путинцев. Москва: МГТУ им. Н.Э. Баумана, 2011. 288 с.
- 8. Семакин, Игорь Геннадьевич. Программирование, численные методы и математическое моделирование [Текст] : учебное пособие / И. Г. Семакин, О. Л. Русакова, Е. Л. Тарунин, А. П. Шкарапута. Москва : КНОРУС, 2017. 297 с.; см.; ISBN 978-5-406-00862-1
- 9. Тарасов, В.Н. Численные методы. Теория, алгоритмы, программы [Текст]: Учебное пособие предназначено для студентов специальностей направления 230100 Информатика и вычислительная техника. Самара: ПГУТИ, 2017. 266 с.; см.; ISBN 5-7410-0451-2
- 10. Токарева, С.А. Прикладная газовая динамика. Численные методы решения гиперболических систем уравнений: учебное пособие / С.А. Токарева. Санкт-Петербург: Лань, 2019. 244 с. ISBN 978-5-8114-3741-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/118622 (дата обращения: 13.03.2020). Режим доступа: для авториз. пользователей.
- 11. Кузьмин, Алексей Михайлович. Моделирование процессов лопаточных машин с использованием средств Star CCM + [Текст] : практическое пособие / А. М. Кузьмин ; Министерство образования и науки Российской Федерации, Балтийский государственный технический университет "Военмех". Санкт-Петербург : БГТУ, 2017. 37, [1] с. : ил.; 20 см.; ISBN 978-5-906920-58-4 : 100 экз.
- 12.Simcenter STAR-CCM+ 2020.1 Help Documentation [Электронный ресурс] Siemens PLM Software, 2020

4.3 Дополнительная литература

- 1. Компьютерные модели в информационных технологиях на железнодорожном транспорте Г.В.Сменцарев М.: МИИТ, 2005 НТБ МИИТа.Экземпляры: ФБ (3), ЧЗ (2) Все разделыс. 3- 179
- 2. Эффективное функционирование железнодорожного транспорта на основе информационных технологий А.С. Мишарин М.: ВИНИТИ, 2007 НТБ МИИТа. Экземпляры: ФБ (3) Все разделыс. 3- 300

4.4 Электронные образовательные ресурсы

- 1. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 2. 9BC «BOOK.ru» https://www.book.ru
- 3. ЭБС «ZNANIUM.COM» www.znanium.com

4. . .

4.5 Лицензионное и свободно распространяемое программное обеспечение

1. Office / Российский пакет офисных программ

4.6 Современные профессиональные базы данных и информационные справочные системы

- 1. 1 http://rushim.ru/books/electrochemistry/electrochemistry.htm электронная библиотека
- 2. http://www.ise-online.org International Society of Electrochemistry
- 3. Консультант Плюс справочная правовая система (доступ по локальной сети с компьютеров библиотеки)
- 4. СДО Московского Политеха

5. Материально-техническое обеспечение

Специализированные аудитории «Передовая инженерная школа»: AB4701 и AB4710 оснащенные проектором, экраном, ПЭВМ.

6. Методические рекомендации

6.1 Методические рекомендации для преподавателя по организации обучения

Основным требованием к преподаванию дисциплины является творческий проблемно-диалоговый подход, позволяющий повысить интерес студентов к содержанию учебного материала.

Основная форма изучения и закрепления знаний по этой дисциплине лекции и лабораторные занятия. Преподаватель должен последовательно вычитать студентам ряд лекций, в ходе которых следует сосредоточить внимание на ключевых моментах конкретного теоретического материала, а также организовать проведение лабораторных занятий таким образом, мышление студентов, стимулировать активизировать самостоятельное ими необходимой информации из различных извлечение источников, решений, сравнительный анализ методов сопоставление полученных

результатов, формулировку и аргументацию собственных взглядов на многие спорные проблемы.

Основу учебных занятий по дисциплине составляют лекционные занятия. На первом занятии по данной учебной дисциплине необходимо ознакомить студентов с порядком ее изучения, раскрыть место и роль дисциплины в системе наук, ее практическое значение, ответить на вопросы.

Теоретическое изучение основных вопросов разделов дисциплины должно завершаться лабораторной работой. Темы задач, предлагаемых студентам для решения на практических занятиях, должны быть максимально приближены к темам последних лекций по данной дисциплине. В связи с указанным, целесообразен тесный контакт лектора с преподавателями, ведущими лабораторные занятия.

Изучение дисциплины завершается зачетом. Оценка выставляется преподавателем и объявляется после ответа. Преподаватель, принимающий зачет, лично несёт ответственность за правильность выставления оценки.

Программа составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по специальности 23.04.02 «Наземные транспортно-технологические средства».

6.2 Методические указания для обучающихся по освоению дисциплины

Самостоятельная работа студентов представляет собой важнейшее звено учебного процесса, без правильной организации которого обучающийся не может быть высококвалифицированным выпускником. Самостоятельная работа является одним из видов учебных занятий. Цель самостоятельной работы — практическое усвоение студентами вопросов устройства транспортных средств, рассматриваемых в процессе изучения дисциплины. Самостоятельная работа студентов направлена на изучение теоретического материала, подготовку к лекционным, лабораторным, семинарским (практическим) занятиям; выполнение контрольных заданий.

Аудиторная самостоятельная работа по дисциплине выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию. Внеаудиторная самостоятельная работа выполняется студентом по заданию преподавателя, но без его непосредственного участия.

Задачами самостоятельной работы студента являются:

- развитие навыков самостоятельной учебной работы;
- освоение содержания дисциплины;
- углубление содержания и осознание основных понятий дисциплины;

 использование материала, собранного и полученного в ходе самостоятельных занятий для эффективной подготовки к дифференцированному зачету и/или экзамену.

Студент должен помнить, что начинать самостоятельные занятия следует с первого семестра и проводить их регулярно. Каждый студент должен сам планировать свою самостоятельную работу, исходя из своих возможностей и приоритетов. Это стимулирует выполнение работы, создает более спокойную обстановку, что в итоге положительно сказывается на усвоении материала.

Студент должен помнить, что в процессе обучения важнейшую роль играет самостоятельная работа с технической литературой. Научиться работать с технической литературой — важнейшая задача студента. Без этого навыка будет чрезвычайно трудно изучать программный материал, и много времени будет потрачено нерационально. Работа с технической литературой складывается из умения подобрать необходимые книги, разобраться в них, законспектировать, выбрать главное усвоить и применить на практике.

7. Фонд оценочных средств

7.1 Методы контроля и оценивания результатов обучения

В процессе обучения используются следующие оценочные формы самостоятельной работы студентов, оценочные средства текущего контроля успеваемости и промежуточных аттестаций:

- -подготовка к лабораторным занятиям и выполнение и защита их;
- выполнение самостоятельных работ по темам.

7.2 Шкала и критерии оценивания результатов обучения

Шкала оценивания	Описание					
Зачтено	Выполнены все виды учебной работы, предусмотренные учебным планом. Студент демонстрирует соответствие знаний, умений, навыков приведенным в таблицах показателей, оперирует приобретенными знаниями, умениями, навыками, применяет их в ситуациях повышенной сложности. При этом могут быть допущены незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на другие конструкции.					

генс

Не выполнен один или более видов учебной работы, предусмотренных учебным планом. Студент демонстрирует неполное соответствие знаний, умений, навыков приведенным в таблицах показателей, допускаются значительные ошибки, проявляется отсутствие знаний, умений, навыков по ряду показателей, студент испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на другие конструкции.

7.3 Оценочные средства

7.3.1. Текущий контроль

- 1. Выполнение элементов CAD модели в NX CAD и Teamcenter
- 2. Создание изделий и наполнение их данными в электронной структуре проекта создания нового типа двигателей
- 3. Изучение материалов ЭУК с выполнением тестирования для самоконтроля
- 4. Создание и изменение данных электронной структуры изделия в PLMсистемы ПО Teamcenter
- 5. Изучение материалов ЭУК с выполнением тестирования для самоконтроля
- 6. Трехмерное проектирование шатуна для машиностроительного предприятия
- 7. Подготовка расчетов и данных для моделирования двигателей и силовых установок в 1D постановке в ПО Simcenter Amesim
- 8. Создание пользовательских библиотек ПО Simcenter Amesim для моделирования двигателя 8ДМ-21 на основе требований из ТЗ № 8ДМ-21К.00.000
- 9. Решение задач прочности различными методами численного моделирования
- 10. Определение требований к прочностным расчетам в ПО SIMCENTER 3D
- 11. Выбор критериев качества подготовки расчетной геометрии встроенными средствами ПО SIMCENTER 3D
- 12. Проведение расчетов и обработка результатов прочностных расчетов ПО SIMCENTER 3D (на примере узлов и компонентов цифровых двойников)
- 13. Определение схем параллельных вычислений и взаимосвязей при выполнении прочностных расчетов в 3D постановке
- 14.Подготовка физического отображения результатов прочностного расчета на модели
- 15.Интерпретация результатов численного моделирования в ПО SIMCENTER 3D

16. Сбор данных и обработка результатов виртуальных испытаний цифрового двойника к валидации в ПО SIMCENTER 3D

7.3.2. Промежуточная аттестация Контрольное задание

Результаты	
(освоенные	Показатели оценки
профессиональные	результатов
компетенции)	
Моделировать работу систем автомобиля в 1D постановке	 1. 1D модель представлена в виде базовой архитектуры в формате ате., 2. Элементы базовой архитектуры описаны (разработаны) с использованием пользовательского библиотечного компонента с расширением spe., 3. Элементы и связи базовой архитектуры обеспечивают выполнение изделием запланированных функций, 4. Заданные значения параметризации позволяют менять граничные условия для проведения многовариантных экспериментов в соответствии с ТЗ на моделирование работы систем, Расчетные значения целевых показателей подтверждают соответствие 1D модели требованиям к изделию (модель верифицирована).
Моделировать поведение деталей автомобиля в 3D постановке с применением SIMCENTER 3D	 3D модель полностью отражает параметры и характеристики, заложенные в конструкторской документации на изделие, Изменение входных параметров цифрового двойника позволяет получить численное моделирование динамических и физических процессов в соответствии с ТЗ на моделирование, Значения выходных параметров численного моделирования подтверждают соответствие цифрового двойника требованиям к системам и компонентам, Программа и методика виртуальных испытаний цифрового двойника полностью отражает программу и методику физических испытаний опытного образца,

5. Отклонение значений интегральных характеристик шатуна, полученных по результатам валидации цифрового двойника, составляет не более 10%.